图4 堵车工况下工作电压与SOC的变化曲线
2.2 不同工况对锂离子动力电池组端电压及其一致性的影响
尽管可以将电池组整体看作是单个高压电池,但仍需独立考虑每个单体电池的情况。这是由于,单体电池若是与其他电池发生偏差,经过长期的充放电周期后,其状态将会与其他电池产生严重偏离,从而导致电池组的故障与损坏。
因此,必须对单体电池进行监控,以确定其充放电状态,保证电池组安全有效的运行。本试验根据试验车行车过程中采集的工作电压以及单体电压的数据,考察不同工况对锂离子动力电池单体电压和工作电压的影响。
图5-7分别是试验得到的长距离工况、市区山坡工况以及高峰期堵车工况下工作电压与单体电压的变化曲线。
由图中可以看出,四种不同工况下的电池工作电压变化大体一致,工作电压的变化范围在340-360V之间。而对于单体电池应注意的是,当单体电压低于2.5V时,单体电压易继续下降损坏电池。因此要通过CAN总线实时监控单体电压,对于低于2.5V的单体电池及时进行调整或更换。
由图中可以看出,在四种工况运行过程中,单体电压的变化范围在3.2-3.4V之间,各单体电池的电压差小于0.2V,电压浮动较小,并且各单体电压均大于2.5V。另外,对比各图中的两个曲线,可以看出,单体电池电压的变化趋势和工作电压的变化总体一致。
有学者将电池组单体相对电压差(定义为最高电压和最低电压之差和单体标称电压的百分比)作为衡量其一致性程度的指标,进一步观察图5-7可知,长距离工况、市区山坡工况、高峰期堵车工况下电池组的单体相对电压差分别为2.9%,3.8%,3.5%,即市区山坡工况、高峰期堵车工况对电池组单体电压(一致性)的影响较长距离工况的大。为避免电池组的故障与损坏,对单体电池的电压进行监管非常重要。
图5 长距离工况下工作电压与单体电压的变化曲线
图6 山坡工况下工作电压与单体电压的变化曲线
图7 堵车工况下工作电压与单体电压的变化曲线
2.3 不同工况对锂离子动力电池工作电流的影响
由于电池存在一定的内阻,当电池长时间流过较大的电流时,电池温度会持续升高,如果不及时进行热管理,会严重影响电池的稳定性和使用寿命。
此外,Li 在正、负极的脱嵌能力有限,与之相对应的是锂离子电池最大允许充放电电流,而电流过大会导致极化电压升高,电池提到达到截止电压,影响电池的可用容量,如果电池长时间处在电流过大状态还会导致 Li 的沉积,带来安全隐患,因此需要在电池使用过程中,控制充放电电流在合理范围内。
本试验根据试验车行车过程中采集的工作电流的数据,考察不同工况对锂离子动力电池工作电流的影响。
图8-10是不同工况下工作电压与工作电流的变化曲线。电流为正值时,动力电池放电;当电流为负值时,动力电池充电。从图中可以看出,工作电流的变化与工作电压有关,当工作电压大时,工作电流低;工作电压小时,工作电流大。
此外,堵车工况下的工作电流零值与负值的比例较大,这是由于行车过程中的刹车制动回收能量所致。山坡工况下的工作电流值较长时间处在较高的水平上,这是由于此时试验车工作于加速或爬坡的工况。
而长距离工况下,由于行驶于市区车流量较小的平坦路段,工作电流正负值的变化较为均衡。综上可知,市区山坡工况、高峰期堵车工况对动力电池工作电流的影响较长距离工况的大。