可能对于读者来说,把这本书买回家,精神意义远大于实际意义。
毕竟自17世纪法国数学家马林·梅森(Marin Mersenne)开始,人们就开始不断寻找梅森素数。找到第50个梅森素数,是数学领域的重大发现,也是人类发展一个新的里程碑。
这本书更多的是一种信仰,代表人类力求不断进步,勇攀高峰的精神。
可能看到这里,就会有人要问了,为什么科学家们这么热衷于寻找素数?素数到底有什么用?现在小天给大家聊聊关于素数的一切。
素数是什么
素数定义为大于1的自然数中,除了1和它本身以外不再有其他因数。
这个定义很容易理解,以小于10的自然数为例,2、3、5、7是素数,比如7只能被分解为1乘以7,没有其他分解方式。对于其他数来说,比如8可以被分解为2×4,所以8不能是素数。
之所以科学家们热衷于寻找素数。一方面,是对于自身理想的追求,孜孜不倦地在数学的高峰上攀登。但另一方面,素数在实际场景当中却体现很大的价值。
- 1、计算机领域
素数在计算机领域当中的应用,莫过于信息的加密,其中有著名的RSA算法(小智以前写过RSA算法的介绍,点击传送门)。由于目前大整数的因式分解,即寻找一个大整数的素数因子,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。也就是说,只要密钥长度足够长,寻找素数因子的时间则非常长,用RSA加密的信息实际上是不能被解破的。因此,素数在密码学当中有重要的地位。
只有拥有钥匙(私钥)的情况下,才能解出信息
- 2、工业领域
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数可以设计成素数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强齿轮的耐用度,减少故障。
汽车序列式变速箱的细节图
- 3、生物领域
北美的周期蝉(Magicicada)有着奇特的生命周期。它们要经过一段漫长的时间,每13或17年,才会成群地破土而出。
自17世纪中叶起,科学家就一直对周期蝉的生命周期困惑不已。它们遵循着相同的基本生命周期:幼虫在地底生活13或17年,然后在夏季大量出现。它们爬上树,蜕皮,成长为成虫,然后在短短数周内,成虫相遇、交配、产卵。孵化后,幼虫会回到地底,等待下一个轮回。
为什么是13或者17年,而不是其他数字,而恰好这个数字是素数?
当这些周期蝉大量出土繁殖时,周期蝉的天敌大吃特吃,天敌有更多的营养进行繁殖,天敌数量将会大大增加。假设天敌是6年才能性成熟,它的后代又要6年之后才会性成熟繁殖,因为没有周期蝉吃,它们的数量一直是回落的。再假设周期蝉的周期是18年,那么天敌们将在第18年继续大吃特吃,在这个18年周期内产生了更多的天敌,这样每过18年,天敌的总数不断上涨,周期蝉的数量就越来越少了。同理,周期是16年的周期蝉,很可能会被周期为2、4、8年的天敌吃到绝种。
而13年蝉和17年蝉刚好避过了这些可能性,因为13和17是素数,除非天敌每年繁殖,或者刚好13或17年繁殖,否则不可能成为帮助天敌进行繁殖。因为13年蝉和17年蝉选择了素数的生命周期,大幅度降低了帮助天敌繁殖的机会,使得自己能够生存到今天。(大自然可真神奇)