数学物理方法有多重要,数学物理学习方法归纳总结举例

首页 > 教育 > 作者:YD1662024-05-07 10:26:03

许多人对数学的理解常常停留在高深、抽象的数学证明层面,由此也衍生出了一些“数学无用论”的笑话。

不过,笑话归笑话,但这却说明了一个残酷的现实:在公众中的确有人对数学的作用不了解,认为数学只是数学家的游戏,与实际生活无关,甚至觉得数学对国家社会的发展没什么作用。


而真实情况是,数学从它的诞生之日起就打上了应用的烙印。货物交易、土地测量、历法等都是古代数学研究的内容。我国古代的数学著作《周髀算经》、《九章算术》、《孙子算经》等等,内容也都是研究日常生活相关的计算问题。


我国古代著名的哲学家老子在《道德经》中写道:“善数,不用筹策”,意思是善于计数的人不用筹码也可以进行计算。可见,他对数学的作用也是充分肯定的。“亚圣”孟子是辩论大师,《孟子》中大量应用归纳、演绎、类比等逻辑推理的方法,而逻辑推理也是数学的基础。


数学还为其他学科的新发现提供了指导和表达形式。这方面例子比比皆是:微分方程为流体力学、微分几何为相对论、数论为密码学、博弈论为经济学的发展都提供了强大的理论支撑。数学是所有自然科学的基础,也是强有力的工具,对很多其他科学领域的发展起了重要的作用。


不少其他领域的科学家对数学的重要性有充分的阐述。达尔文是举世闻名的生物学家,他提出了生物进化论学说、出版了著名的《物种起源》。他曾经说过:“任何新发现在形式上都是数学,因为我们没有其他引导。”达芬奇说:“人类探索如果不能用数学表达,就不能真正称之为科学”“力学是数学的乐园,因为我们在这里获得了数学的果实。”


数学物理方法有多重要,数学物理学习方法归纳总结举例(1)

达尔文(1809-1882)


当然,有些数学家关注的问题是高度抽象的纯数学问题,这些问题可能看上去在现实中没有直接的应用。也有的数学家本身对有应用背景的数学问题兴趣不大。因为一旦需要解决实际问题,很多理想的假设不成立,分析和推导就可能不够完美。总之,对应用有偏见的数学家还是存在的。著名数学家哈代就是其中之一。


哈代认为真正的数学就是不应当与应用挂钩,而且毫无遮拦地瞧不上应用数学。他在《一个数学家的辩白》中写到:“真正的数学对战争没有影响,……有一些应用数学的分支,……也许很难说它们是‘微不足道的’,但它们没有一个是‘真正的’数学,它们是令人厌恶的丑陋以及不堪忍受的无趣。”“我没有做过任何‘有用的’工作。我的发现,无论是直接的还是间接的,无论好还是坏,对这个世界不起任何作用。”


不过,有意思的是,哈代本人的有些工作在实际中确实得到了应用。比如,哈代-拉马努金渐进公式在统计物理中派上了用场,也被著名物理学家玻尔用于原子核量子分区函数的计算。这足以反驳哈代的“数学无用论”。


好在像哈代这样偏执的数学家是极少数。大多数学家都认识到数学必须与实际紧密结合。俄国数学家切比雪夫曾诙谐地说:“使数学脱离实际需求,就好比把母牛关起来不让它接触公牛。”切比雪夫在素数理论、函数逼近等方面有着重要贡献,切比雪夫多项式、切比雪夫不等式都是以他命名的。

数学物理方法有多重要,数学物理学习方法归纳总结举例(2)

切比雪夫(1821-1894)


总之,数学的应用随处可见。印度作家夏琨塔拉·戴维曾说过:“没有数学,你什么也不能做。你周围所有的东西都是数学,你周围所有的东西都是数字。”


数学物理方法有多重要,数学物理学习方法归纳总结举例(3)

夏琨塔拉·戴维(1929-2013)


2020年,国际数学联盟庆祝首届国际数学节的主题词就是“数学无处不在”。这正是向公众宣传数学在各行各业正发挥着重要作用。


数学物理方法有多重要,数学物理学习方法归纳总结举例(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.