几乎所有的业务项目都会涉及数据存储,虽然当前各种NoSQL和文件系统大行其道,但MySQL等关系型数据库因为满足ACID、可靠性高、对开发友好等特点,仍然最常被用于存储重要数据。在关系型数据库中,索引是优化查询性能的重要手段。
为此,我经常看到一些同学一遇到查询性能问题,就盲目要求运维或DBA给数据表相关字段创建大量索引。显然,这种想法是错误的。今天,我们就以MySQL为例来深入理解下索引的原理,以及相关误区。
InnoDB是如何存储数据的?MySQL把数据存储和查询操作抽象成了存储引擎,不同的存储引擎,对数据的存储和读取方式各不相同。MySQL支持多种存储引擎,并且可以以表为粒度设置存储引擎。因为支持事务,我们最常使用的是InnoDB。为方便理解下面的内容,我先和你简单说说InnoDB是如何存储数据的。
虽然数据保存在磁盘中,但其处理是在内存中进行的。为了减少磁盘随机读取次数,InnoDB采用页而不是行的粒度来保存数据,即数据被分成若干页,以页为单位保存在磁盘中。InnoDB的页大小,一般是16KB。
各个数据页组成一个双向链表,每个数据页中的记录按照主键顺序组成单向链表;每一个数据页中有一个页目录,方便按照主键查询记录。数据页的结构如下:
页目录通过槽把记录分成不同的小组,每个小组有若干条记录。如图所示,记录中最前面的小方块中的数字,代表的是当前分组的记录条数,最小和最大的槽指向2个特殊的伪记录。有了槽之后,我们按照主键搜索页中记录时,就可以采用二分法快速搜索,无需从最小记录开始遍历整个页中的记录链表。
举一个例子,如果要搜索主键(PK)=15的记录:
- 先二分得出槽中间位是(0 6)/2=3,看到其指向的记录是12<15,所以需要从#3槽后继续搜索记录;
- 再使用二分搜索出#3槽和#6槽的中间位是(3 6)/2=4.5取整4,#4槽对应的记录是16>15,所以记录一定在#4槽中;
- 再从#3槽指向的12号记录开始向下搜索3次,定位到15号记录。
理解了InnoDB存储数据的原理后,我们就可以继续学习MySQL索引相关的原理和坑了。
聚簇索引和二级索引说到索引,页目录就是最简单的索引,是通过对记录进行一级分组来降低搜索的时间复杂度。但,这样能够降低的时间复杂度数量级,非常有限。当有无数个数据页来存储表数据的时候,我们就需要考虑如何建立合适的索引,才能方便定位记录所在的页。
为了解决这个问题,InnoDB引入了B 树。如下图所示,B 树是一棵倒过来的树:
B 树的特点包括:
- 最底层的节点叫作叶子节点,用来存放数据;
- 其他上层节点叫作非叶子节点,仅用来存放目录项,作为索引;
- 非叶子节点分为不同层次,通过分层来降低每一层的搜索量;
- 所有节点按照索引键大小排序,构成一个双向链表,加速范围查找。
因此,InnoDB使用B 树,既可以保存实际数据,也可以加速数据搜索,这就是聚簇索引。如果把上图叶子节点下面方块中的省略号看作实际数据的话,那么它就是聚簇索引的示意图。由于数据在物理上只会保存一份,所以包含实际数据的聚簇索引只能有一个。
InnoDB会自动使用主键(唯一定义一条记录的单个或多个字段)作为聚簇索引的索引键(如果没有主键,就选择第一个不包含NULL值的唯一列)。上图方框中的数字代表了索引键的值,对聚簇索引而言一般就是主键。
我们再看看B 树如何实现快速查找主键。比如,我们要搜索PK=4的数据,通过根节点中的索引可以知道数据在第一个记录指向的2号页中,通过2号页的索引又可以知道数据在5号页,5号页就是实际的数据页,然后再通过二分法查找页目录马上可以找到记录的指针。
为了实现非主键字段的快速搜索,就引出了二级索引,也叫作非聚簇索引、辅助索引。二级索引,也是利用的B 树的数据结构,如下图所示:
这次二级索引的叶子节点中保存的不是实际数据,而是主键,获得主键值后去聚簇索引中获得数据行。这个过程就叫作回表。
举个例子,有个索引是针对用户名字段创建的,索引记录上面方块中的字母是用户名,按照顺序形成链表。如果我们要搜索用户名为b的数据,经过两次定位可以得出在#5数据页中,查出所有的主键为7和6,再拿着这两个主键继续使用聚簇索引进行两次回表得到完整数据。
考虑额外创建二级索引的代价创建二级索引的代价,主要表现在维护代价、空间代价和回表代价三个方面。接下来,我就与你仔细分析下吧。
首先是维护代价。创建N个二级索引,就需要再创建N棵B 树,新增数据时不仅要修改聚簇索引,还需要修改这N个二级索引。
我们通过实验测试一下创建索引的代价。假设有一个person表,有主键ID,以及name、score、create_time三个字段:
CREATE TABLE `person` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`name` varchar(255) NOT NULL,
`score` int(11) NOT NULL,
`create_time` timestamp NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
通过下面的存储过程循环创建10万条测试数据,我的机器的耗时是140秒(本文的例子均在MySQL 5.7.26中执行):
CREATE DEFINER=`root`@`%` PROCEDURE `insert_person`()
begin
declare c_id integer default 1;
while c_id<=100000 do
insert into person values(c_id, concat('name',c_id), c_id 100, date_sub(NOW(), interval c_id second));
set c_id=c_id 1;
end while;
end
如果再创建两个索引,一个是name和score构成的联合索引,另一个是单一列create_time的索引,那么创建10万条记录的耗时提高到154秒:
KEY `name_score` (`name`,`score`) USING BTREE,
KEY `create_time` (`create_time`) USING BTREE
这里,我再额外提一下,页中的记录都是按照索引值从小到大的顺序存放的,新增记录就需要往页中插入数据,现有的页满了就需要新创建一个页,把现有页的部分数据移过去,这就是页分裂;如果删除了许多数据使得页比较空闲,还需要进行页合并。页分裂和合并,都会有IO代价,并且可能在操作过程中产生死锁。
你可以查看这个文档,以进一步了解如何设置合理的合并阈值,来平衡页的空闲率和因为再次页分裂产生的代价。
其次是空间代价。虽然二级索引不保存原始数据,但要保存索引列的数据,所以会占用更多的空间。比如,person表创建了两个索引后,使用下面的SQL查看数据和索引占用的磁盘:
SELECT DATA_LENGTH, INDEX_LENGTH FROM information_schema.TABLES WHERE TABLE_NAME='person'
结果显示,数据本身只占用了4.7M,而索引占用了8.4M。
最后是回表的代价。二级索引不保存原始数据,通过索引找到主键后需要再查询聚簇索引,才能得到我们要的数据。比如,使用SELECT * 按照name字段查询用户,使用EXPLAIN查看执行计划:
EXPLAIN SELECT * FROM person WHERE NAME='name1'
执行计划如下,可以发现: