如何在三角形内做中垂线,三角形中垂线三种画法

首页 > 教育 > 作者:YD1662024-11-28 02:16:55

如何在三角形内做中垂线,三角形中垂线三种画法(9)

3.问题探究:

(一)新知学习:

圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).

(二)问题解决:

已知⊙O的半径为2,AB,CD是⊙O的直径.P是弧BC上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.

(1)若直径AB⊥CD,对于弧BC上任意一点P(不与B、C重合) (如图一),证明四边形PMON内接于圆,并求此圆直径的长;

(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程中,证明MN的长为定值,并求其定值;

(3)若直径AB与CD相交成120°角.

①当点P运动到弧BC的中点P1时(如图二),求MN的长;

②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.

(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.

如何在三角形内做中垂线,三角形中垂线三种画法(10)

【解析】:(1)如图一,

∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,

∴∠PMO ∠PNO=180°,

∴四边形PMON内接于圆,直径OP=2;

(2)如图一,∵AB⊥OC,即∠BOC=90°,

∴∠BOC=∠PMO=∠PNO=90°,

∴四边形PMON是矩形,∴MN=OP=2,

∴MN的长为定值,该定值为2;

(3)①如图二,∵P1是弧BC的中点,∠BOC=120°

∴∠COP1=∠BOP1=60°,∠MP1N=60°.

∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,

∴△P1MN是等边三角形,∴MN=P1M.

∵P1M=OP1•sin∠MOP1=2×sin60°=√3,∴MN=√3;

②设四边形PMON的外接圆为⊙O′,连接NO′并延长,

交⊙O′于点Q,连接QM,如图三,

如何在三角形内做中垂线,三角形中垂线三种画法(11)

则有∠QMN=90°,∠MQN=∠MPN=60°,

在Rt△QMN中,sin∠MQN=MN/QN,

∴MN=QN•sin∠MQN,

∴MN=OP•sin∠MQN=2×sin60°=2×√3/2=√3,

∴MN是定值.

(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.

当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.

如何在三角形内做中垂线,三角形中垂线三种画法(12)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.