强相互作用和弱相互作用的区别,弱相互作用和强相互作用谁更大

首页 > 经验 > 作者:YD1662022-11-03 02:12:56

卢瑟福认定这个过程是第一个人造的元素转换过程——高能的α粒子可以将一个原子核打成质量更小的原子核[7,8]。这个末态中和氢原子类似的带电粒子被卢瑟福称为质子1)。

在发现质子之后,卢瑟福又提出了中子的概念。当时人们认为实验中看到的各种原子核是由带电的氢原子核加电子组成的,比如N-14由14个氢原子核和7个电子组成。卢瑟福认为原子核中的质子和电子可能形成一种中性的深束缚态,即中子。1932年,卢瑟福预言的这种原子核中电中性的粒子被他的学生查德威克发现。

2.1.5 伟大的学术导师

弗雷德里克·索迪(Frederick Soddy,1877—1956)因对放射化学的贡献以及对同位素本质的研究获得1921年诺贝尔化学奖。索迪曾在1900年至1907年跟随卢瑟福开展放射性研究,发现放射性物质可以通过放出放射线变为其他元素,见式(1)。1913年他发现一种放射性物质,即使具有完全相同的化学性质,也可以具有不同的质量数。索迪将它们称为同位素[9]。

弗朗西斯·阿斯顿(Francis William Aston,1877—1945)因利用自己发明的质谱仪发现大量非放射性元素的同位素以及提出的“整数法则(wholenumber rule)”而获得1922年诺贝尔化学奖。阿斯顿和卢瑟福同为汤姆孙的学生,两人在卡文迪什实验室共度了很多时光,成为了非常亲密的同事和知心朋友。第一次世界大战之后阿斯顿回到卡文迪什实验室改进了当时鉴别粒子的仪器,提高了质量的分辨率[10]。阿斯顿用自己设计的质谱仪极大地拓展了卢瑟福和索迪开拓的同位素研究,研究了大约30种非放射性元素的同位素,精确地测量了它们的质量,发现所有同位素的质量都是氢原子质量的整数倍。这些发现促进了人们对原子核结构的理解。

尼尔斯·玻尔(Niels Bohr,1885—1962)因对原子结构及辐射规律的研究而获得1922年诺贝尔物理学奖。1912年,26岁的丹麦物理学家玻尔受邀来到曼彻斯特大学跟随卢瑟福做博士后研究。玻尔以卢瑟福的原子核式模型为基础,提出了行星轨道模型[11],即外围电子只能以特定频率,特定轨道绕着原子核旋转。电子可以在不同轨道之间跃迁,进而吸收或放出相应能量的电磁波。玻尔之所以提出这种直观上很难理解的假设,是为了解决卢瑟福模型中致命的不足——带电粒子做圆周运动会释放电磁波损失能量,这意味着所有的原子都是不稳定的,与现实严重不符。同时,这种半经典的轨道模型也可以解释原子的离散光谱,促进了后续量子力学的建立。

查尔斯·威尔逊(Charles Wilson,1869—1959)因发明可以显示带电粒子径迹的云雾室而获得1927年诺贝尔物理学奖。1896年,与卢瑟福同在卡文迪什实验室工作的威尔逊发明了云雾室,在一个封闭容器内,输入纯净的乙醇或者甲醇蒸气,通过降低温度使蒸气达到过饱和状态,此时如果有带电粒子射入,就会在路径上产生离子,过饱和蒸气会以离子为核心凝结成小液滴,从而显示出粒子的径迹。卢瑟福在汤姆孙的建议下进行的X射线电离性质的研究对认识云雾室机理起到了重要作用2)。卢瑟福发现α和β射线后,威尔逊首先用云雾室观察到并照相记录了α和β粒子的径迹。

詹姆斯·查德威克(James Chadwick,1891—1974)因发现中子而获得1935年诺贝尔物理学奖。查德威克自本科开始就跟随卢瑟福学习工作并于1913年获得硕士学位,一战后他在卢瑟福的指导下攻读博士学位并在卡文迪什实验室作为卢瑟福助手工作了超过十年。1930年德国的物理学家博特(Walther Bothe)与学生贝克用钚辐射出来的α粒子轰击铍核,发现产生了一种未知的射线。1931年,法国的小居里夫妇(Frédéric and Irène Joliot-Curie)也观测到了这种中性射线,他们误认为是高能光子。卢瑟福和查德威克不同意这种观点,他们认为这可能是之前卢瑟福所预言的中子。查德威克加班加点展开了中子的探测和验证实验。仅仅两周之后,查德威克就将自己的论文《可能存在的中子》[12],寄给了Nature杂志。

奥托·哈恩(Otto Hahn,1879—1968)因发现重核裂变而获得1944年诺贝尔化学奖。1905至1906年,哈恩曾在麦吉尔大学作为卢瑟福的助手开展工作,在此期间他发现了数个放射性元素的同位素。1939年,哈恩和他的学生Fritz Strassman利用中子激发铀核,在末态探测到了钡[13]。这和之前观测到的α,β,γ衰变完全不同。后来经Lise Meitner和Otto Frisch理论研究发现铀核发生了劈裂变成了更轻的核[14,15],这种裂变的现象对后续原子能的利用至关重要。

帕特里克·布莱克特(Patrick Blackett,1897—1974)因改进了威尔逊的云雾室并用它研究了大量宇宙射线及核反应中的粒子而获得1948年诺贝尔物理学奖。布莱克特自1921年开始,在卢瑟福的实验室工作了十年。1925年他利用云雾室证明,卢瑟福发现质子的实验中发生的真实过程是式(3)而非式(2)[16]。1932年,布莱克特将威尔逊的云雾室与盖革计数器连在一起,并用这种改进的探测器发现了大量宇宙射线中的粒子,包括验证了正电子的存在,观测到了正负电子对的产生等一系列重要的结果。

约翰·考克罗夫特和欧内斯特·沃尔顿(John Cockcroft,1897—1967 & Ernest Walton,1903—1995)因在人工加速的粒子对原子核的嬗变方面进行了开创性的工作而获得1951年诺贝尔物理学奖。考克罗夫特与沃尔顿都是卢瑟福在卡文迪什实验室的学生。在卢瑟福用镭放射的α粒子轰击氮核得到质子之后,他希望得到能量更高的粒子束流轰击原子核得到更多的反应过程进而详细探究核结构。卢瑟福将这个任务安排给了考克罗夫特与沃尔顿等人。1932年,考克罗夫特与沃尔顿合作成功建造了一台直流高压加速器,取代了天然放射α粒子束流,第一次实现人工加速粒子产生的核反应,开辟了粒子物理实验的新天地。

彼得·卡皮察(Pyotr Kapitsa,1894—1984)因对低温物理领域基础性的发明和发现获得1978年诺贝尔物理学奖。一战之后卡皮察来到英国,在卢瑟福手下工作了14年并于1930年成为新成立的蒙德实验室主任,专门研究磁场。1934年他回到苏联探亲,但苏联政府不允许他再回英国。卢瑟福给苏联政府去信交涉无果,卡皮察决定转变方向,进行低温物理的研究。在卢瑟福的帮助下购买了蒙德实验室的实验仪器,成立了物理问题研究所。

2.2 中子物理

恩里克·费米(Enrico Fermi,1901—1954)因利用中子辐射发现新的放射性元素及发现慢中子更容易诱发核反应而获得1938年诺贝尔物理学奖。费米是少有的在理论和实验两方面都作出杰出贡献的物理学家。理论方面,他的贡献集中在统计物理、量子物理、核物理与粒子物理等领域。而实验方面,他用中子辐射诱发核反应,领导建造世界上第一台人工核反应堆,参与美国建造原子弹的“曼哈顿计划”等。

自1932年中子被查德威克发现之后,便成为研究核结构的新工具。1934年人们发现某些原子核吸收α粒子之后会具有放射性。费米决定将α粒子换作中子试试。中子不带电,无需克服库仑势能就可以被原子核俘获,进而诱发核反应。经过一系列中子诱发的核实验,费米实验组发现对于轻的原子核,中子所带来的能量会被放出的质子或α粒子带走,而对于重核,更多的是释放γ射线。根据当时的理论,重核俘获中子之后进而发生β衰变,Z将增加1。当用中子轰击铀核的时候他们的确观测到了这种现象——末态有很多粒子的半衰期与当时已知的原子核都不一样。于是他们宣称发现了第93,94号元素。由于他们没能将这些新元素分离出来,他们的发现受到了一些科学家的质疑。尽管如此,诺贝尔奖委员会还是因为费米发现了两种新元素而将1938年诺贝尔奖颁给了他。就在诺奖颁布的一个月后,哈恩等人发现了原子核的裂变现象[13]。很快费米宣称的两种“新元素”就被证明是核裂变的产物,均为已知元素的同位素。

事后来看,尽管诺贝尔奖委员会给费米的获奖理由是错的,但是应该没有人会质疑费米获得诺贝尔奖的合理性——他在很多方面都做出了诺奖级的工作。20世纪20年代,β衰变中末态电子的能量是连续的这件事已经确凿无疑。为了理解这件事情,泡利假设末态除了质子和电子外还存在一种电中性的质量非常小的粒子,并将其称为“中子”。费米接受了这种观点并将其名字改为“中微子”。费米还构造了四费米子相互作用来描述β衰变,该理论经过后续包括李政道、杨振宁在内的科学家的发展,逐渐演变为标准模型中的弱相互作用理论。在统计物理领域,自旋为半整数的粒子就是以他的名字命名,即费米子。他分析了由费米子构成的理想气体系统(即费米气体),利用费米—狄拉克统计来描述它们的状态分布。在量子物理领域,费米的黄金定则描述了不同能量本征态之间的跃迁率。此类种种,费米对现代物理学的发展举足轻重。

2.3 核力及原子核结构

汤川秀树(Hideki Yukawa,1907—1981)因在理论分析核力时预言了π介子的存在而获得1949年诺贝尔物理学奖。1932年中子被发现之后,人们渐渐意识到原子核由质子和中子(统称为核子)构成。但是质子带正电,中子不带电,他们不可能通过电磁相互作用束缚在一起形成原子核。费米为描述β衰变提出的四费米子相互作用非常之弱,根本不足以束缚核子[17]。1934年汤川秀树引入一种新的相互作用来解释核子之间的吸引力[18]。类似于带电粒子通过交换光子实现电磁相互作用,核子通过交换介子实现相互作用,产生束缚力。汤川秀树根据原子核的尺寸,r~1 fm(~10-15 m),估计出介子的质量约为m∼1/r∼100 MeV。

塞西尔·鲍威尔(Cecil Powell,1903—1969)因对研究核反应过程的乳胶摄影方法的发展以及使用这种方法发现了π介子而获得1950年诺贝尔物理学奖。汤川秀树预言了传递核力的π介子之后,物理学家们就开始了对它的寻找。1936年缪子(µ)被发现,其质量最高可到150 MeV,非常接近汤川秀树的预言,所以一开始人们认为这就是π介子。但后续的实验发现缪子并不参与核反应。1939—1942年,两位印度科学家玻色(Debendra Mohan Bose)和乔杜里(Bibha Chowdhuri)利用摄影感光片在印度的高海拔地区研究了宇宙射线[19,20]。他们在宇宙射线中观测到了质量约为200倍电子质量的粒子。1947年,鲍威尔等人改进了这种方法,独立地在宇宙射线中观测到了这种介子[21]。他们还发现这种介子参与了核子的相互作用,进一步支持它就是汤川秀树预言的π介子。

尤金·维格纳(Eugene P. Wigner,1902—1995)因对原子核及基本粒子理论的贡献,尤其是基本对称性原理的发现和应用,而获得1963年诺贝尔物理学奖。维格纳在理论物理和数学物理领域做出了重要的贡献。他将对称性广泛地应用在物理研究中,很多定理、概念都以他的名字命名,包括维格纳—埃卡特定理(Wigner—Eckart theorem)、维格纳定理、维格纳分类、维格纳d-函数、维格纳6-j,9-j 系数等等。20世纪20年代,维格纳将对称性引入刚建立的量子力学,得到了一系列重要的结果。到了30年代,维格纳发现核子之间的相互作用在相距很远时非常弱,而靠近时又会急剧变强。他还注意到核子满足的对称性并不区分质子和中子,进而将核子束缚在一起的强相互作用对质子和中子是一样的。

玛丽亚·梅耶和汉斯·延森(Maria Goeppert Mayer,1906—1972 & Hans Jensen,1907—1973)因发现原子核的壳层模型而获得1963年诺贝尔物理学奖。在人们认识到原子核是由质子和中子构成的之后,一个重要的问题就是原子核的各种性质与其中质子、中子数量之间的关系。由于缺乏描述核力的精确理论,人们根据实验结果提出了唯象模型来描述原子核的性质。最初提出的液滴模型假设原子核是由质子和中子在电磁力与核力的共同作用下形成的液滴,而整个液滴的能量由表面张力、体积、库仑力、非对称性、核子配对等5个方面决定。由此提出的贝特—魏茨泽克质量公式(Bethe—Weizsäcker mass formula)可以很好地描述原子核的性质,但是却不能解释“幻数(magic number)”的存在。实验发现,具有某些特定质子数或中子数的原子核比较稳定,维格纳将这些数称为“幻数”,包括2,8,20,28,50等等。为解释这种现象,1949年梅耶和延森分别独立地提出了原子核的壳层模型[22—24]。和原子中电子的排布类似,原子核中的质子和中子也有不同的能级,每当一个能级上的态被填充满时,原子核就相对更稳定。

奥格·玻尔、本·莫特尔松和里奥·雷恩沃特(Aage Bohr,1922—2009,Ben Mottelson,1926—2022 & Leo Rainwater,1917—1986)因发现原子核中集体运动和核子运动之间的联系,以及基于这种联系发展了原子核结构理论而获得1975年诺贝尔物理学奖。1949年提出的壳层模型解释了原子核的“幻数”现象,但其得到的原子核的电四极矩与实验结果不符。1950年,哥伦比亚大学的雷恩沃特推测原子核作为一个整体,其形状会受到内部每个核子运动的影响而不再是球对称的[25]。A.玻尔当时在哥伦比亚大学访问,与雷恩沃特交流后更一般性地研究了这个问题,探讨了单个核子的运动对原子核整体运动的影响。A.玻尔回到哥本哈根后与莫特尔松一起对比了理论与实验结果,发现他们的模型与实验结果一致,而且将壳层模型与雷恩沃特原子核形变的概念联系了起来[26—28]。

2.4 天体核物理

汉斯·贝特(Hans Albrecht Bethe,1906—2005)因发展了核反应理论,尤其是用核聚变反应解释恒星能量来源而获得1967年诺贝尔物理学奖。贝特是一位著名的德裔美籍核物理学家。1933年纳粹掌权后,贝特被解雇,他经由英国于1935年移民美国,成为康奈尔大学的教授。1938年,贝特受邀参加一个关于“恒星能量如何产生”的研讨会,他本无意参加这个自己不感兴趣的会议,但泰勒(Edward Teller,被誉为美国氢弹之父)说服了他。会议上贝特了解到了太阳的温度、密度、元素成分等信息。随后贝特提出了两种核反应过程来解释太阳的能量来源[29]:一种是两个氢核变成一个氘核,氘核进一步捕获质子变成4He放出能量;另一种是经过碳核和氮核的催化,四个氢核变成4He并放出能量。它们分别被称为氢—氢链(p—p chain)和碳—氮—氧循环(CNO cycle),如图2(a),(b)所示。经过计算贝特发现,在太阳温度附近,这两种过程所占比例大致相同,温度更低时前者主导,反之后者主导。贝特提出的上述核反应过程成功地解释了恒星能量的来源。

强相互作用和弱相互作用的区别,弱相互作用和强相互作用谁更大(5)

图2 恒星中的氢—氢链(a)和碳—氮—氧循环(b)过程(图片取自维基百科词条“Proton-proton chain”和“CNO cycle”)

贝特作为一位著名的核物理学家,还做出了很多其他重要的工作,包括量子多体系统本征态参数化的贝特拟设(Bethe ansatz),核物理综述三部曲——贝特圣经(Bethe Bible),兰姆移位(Lamb shift)的解释,两体束缚态满足的相对论性方程——贝特—萨佩特方程(Bethe—Salpeter equation)等等。贝特从18岁发表第一篇学术论文,直到90多岁还笔耕不辍,甚至去世后还有一篇合作文章发表。他曾经的博士后戴森(Freeman Dyson)称他为“二十世纪重要问题解决者”。

强相互作用和弱相互作用的区别,弱相互作用和强相互作用谁更大(6)

图3 宇宙元素丰度曲线[30]

威廉·福勒(William Alfred Fowler,1911—1995)因对宇宙中形成化学元素的核反应的理论和实验研究而获得1983年诺贝尔物理学奖。宇宙中的恒星是由气体和尘埃云形成的。当它们被引力拉在一起时,重力势能以热的形式被释放出来。当达到足够高的温度时,恒星内部的原子核之间开始发生反应。这些反应是恒星发光的原因。另一方面,在20世纪50年代,人们已经测出了宇宙元素丰度的分布(其实是太阳中元素的丰度),如图3所示。从图中我们可以看到如下一些特征:元素丰度随着原子质量的增加而指数降低;斜率在原子质量大于100后快速降低;氘核、锂、铍、硼等丰度远小于他们邻居;56Fe附近显著的尖峰;一些双峰结构等等。这些元素是怎么由最初的氢元素形成的?为何会出现图中所示的这些趋势和特点?在著名的B2FH文章[30]中,福勒等证明了恒星中的核反应可以解释元素丰度曲线的这些特征,极大地促进了我们对宇宙中元素的形成的理解。

2.5 核技术应用

费利克斯·布洛赫和爱德华·珀塞尔(Felix Bloch,1905—1983 & Edward Mills Purcell,1912—1997)因开发核磁共振精密测量的新方法,有效地研究了各种材料的成分而获得1952年诺贝尔物理学奖。原子核中的质子和中子就像小型的、旋转的磁铁,因此原子和分子在磁场中会定向排列。电磁场可以扰乱它们的指向,但根据量子力学原理,只能沿着特定的方向。当核子回到原来的位置时,它们会发射特定频率的电磁波,这些频率取决于元素的种类。1946年,珀塞尔和布洛赫开发了精确的测量方法来研究材料的成分。这种方法如今已发展为非常成熟的技术,被广泛地用于生产生活的各个方面。

伯特伦·布罗克豪斯和克利福德·沙尔(Bertram N. Brockhouse,1918—2003 & Clifford G. Shull,1915—2001)因发展中子频谱学和中子衍射技术而获得1994年诺贝尔物理学奖。20世纪四五十年代,随着很多核反应堆的建成,其辐射出的中子为人们提供了研究物质结构的新探针。不同于X射线,不带电的中子不会受材料中电子的影响而可以直达原子核。一方面,当中子与材料中原子核碰撞时,中子的部分能量被转化为晶格的振动。这些被称为声子的振动具有固定的能级,形成一系列能谱。20世纪50年代,布罗克豪斯开发了使用这些光谱分析不同分子和材料属性的技术。另一方面,根据量子力学的原理,中子和其他粒子可以被描述为一种波的运动,中子辐射通过有规律的原子结构就会产生特定的衍射图案。1946年,沙尔开发了新方法,利用这一点来确定不同分子和材料的结构。中子频谱学和中子衍射技术在后续的凝聚态物理、材料科学等研究中发挥了极大的作用。

03夸克与量子色动力学

3.1 质子结构

奥托·施特恩(Otto Stern,1888—1969)因对发展分子射线法的贡献及发现质子的磁矩而获得1943年诺贝尔物理学奖。作为实验物理学家,施特恩做出了很多著名的实验,包括最著名的施特恩—格拉赫实验——量子力学奠基实验之一。施特恩—格拉赫实验证实了原子角动量的量子化,但其实验现象直到乌伦贝克(G. Uhlenbeck)和古兹密特(S. Goudsmit)提出电子自旋的概念后才被完全理解。电子的自旋是1/2,其磁矩为

强相互作用和弱相互作用的区别,弱相互作用和强相互作用谁更大(7)

,其中g为朗德g因子。电子为基本粒子,不考虑电磁相互作用的高阶修正,g=2。质子如果也是基本粒子,没有内部结构,理论预测其磁矩应为

强相互作用和弱相互作用的区别,弱相互作用和强相互作用谁更大(8)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.