垂径定理知二推三什么意思,垂径定理知二推三详细证明

首页 > 经验 > 作者:YD1662022-11-06 16:49:01

数学知识点总结

一、基础知识

(1)空间几何体:典型多面体(棱柱、棱锥、棱台)与典型旋转体(圆柱、圆锥、圆台、球)的结构特征以及表面积体积公式、球面距离、点面距离、中心投影与平行投影、三视图、直观图。

(2)点、线、面的位置关系:平面的三个公理、平行的传递性、等角定理、异面直线的概念、直线与平面的位置关系、平面与平面的位置关系、线面平行的概念、判定定理、性质定理;面面平行的概念、判定定理、性质定理;线面垂直的概念、判定定理、性质定理;面面垂直的概念、判定定理与性质定理;异面垂直、异面直线所成角、线面角与二面角的概念。(不同版本出现时间略有不同)

(3)直线与圆:直线的倾斜角与斜率、斜率公式、直线的方程(点斜式、斜截式、一般式、两点式、截距式)、直线与直线的位置关系(平行、垂直)、平面直角坐标系中的一些公式(两点间距离公式、中点坐标公式、点到直线的距离公式、平行线间的距离公式);圆的标准方程与一般方程、直线与圆的位置关系、圆与圆的位置关系。

常用的拓展知识与结论有:截距坐标公式、面积坐标公式、圆上一点的切线方程;圆外一点的切点弦方程;直线系与圆系的相关知识等。

(4)常用逻辑用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简单的逻辑联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否定。

(5)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简单几何性质(注意离心率与形状的关系);双曲线的定义及其标准方程、双曲线的简单几何性质(注意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简单几何性质;直线与圆锥曲线的常用公式。(弦长公式、两根差公式)

圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等。

(6)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量基本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法。

二、重难点与易错点

重难点与易错点部分配合必考题型使用,做完必考题型后会对重难点与易错部分部分有更深入的理解。

(1)多面体的体积转化及点面距离的求法

(2)较复杂的三视图

(3)球与其它几何体的组合

(4)平行与垂直的证明

(5)立体几何中的动态问题

(6)直线方程的选择与求解,特别要注意斜率不存在的直线

(7)直线与圆的位置关系问题

(8)直线系相关的问题

(9)区分逆命题与命题的否定

(10)理解充分条件与必要条件

(11)椭圆、双曲线与抛物线的定义

(12)椭圆与双

垂径定理知二推三什么意思,垂径定理知二推三详细证明(1)

曲线的几何性质,特别是离心率问题

(13)直线与圆锥曲线的位置关系问题

(14)直线与圆锥曲线中的弦长与面积问题

(15)直线与圆锥曲线问题中的参数求解与性质证明

(16)轨迹与轨迹求法

(17)运用空间向量求空间中的角度与距离

数学学习方法

一、抓好基础。

数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。

弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。

反之,会使解题速度慢,逻辑混乱、叙述不清。

那么如何抓基础呢?

1、看课本。

2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化?

4、归纳全面的解题方法。要积累一定的典型习题以保证解题方法的完整性。

5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

垂径定理知二推三什么意思,垂径定理知二推三详细证明(2)

二、制定好计划和奋斗目标。

复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划。

计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。

在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。

可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。望你在制定计划时注意。

三、严防题海战术,克服盲目做题而不注重归纳的现象。

做习题是为了巩固知识、提高应变能力、思维能力、计算能力。学数学要做一定量的习题,但学数学并不等于做题。

在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的。

但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用。

当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?

只有这样才会培养自己的悟性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

四、常做高考题,揭开高考试题的神秘面纱。

高考题是最好的习题,它在考查知识点时的切入点新而不俗,它正确地控制了对所考查的知识点的难度。

解答一定的高考题,有助于把握高考对该知识点的难度要求;有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,防止做偏题、怪题。

特别在排列组合二项式定理、复数、立体几何、极坐标、三角部分的高考题,难度不大,而平时所见的复习资料中,有相当的习题已超出高考难度。

其实,高考题目中这几部分的习题复习时都能做,并不是很难,更不可怕,可见常做高考题,会克服对高考题的恐惧感。增强将来决胜高考的自信心。

五、归纳数学大思维、大策略。

数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。

在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。

老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。

要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

垂径定理知二推三什么意思,垂径定理知二推三详细证明(3)

六、打好最后阶段复习这一仗,促成数学学习的飞跃。

最后阶段的复习是专题讲座,老师讲对重点知识、重点解题方法、重点数学思想的详细讲座和强化训练。

在这一阶段的复习,要相信老师,淡化各种复习资料,认真地、保质、保量地完成老师布置的强化训练题,集中精力,突破试题中的立体几何、三角、复数、二项式定理、极限等部分的常考知识点,这几部分的习题难度不大。同时尽最大的努力多解决解答题目中的函数、解析几何、数列等压轴题。

如果在这一阶段能及时训练,会使你感到个立竿见影的感觉,使数学学习成绩大幅度提高,促成数学学习的第二次飞跃。

七、积累一定的考试经验。

本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。

其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。这些能力的只有在平时的考试中得到培养和训练。

八、攻克三种题目的解法。

数学试题分为选择题、填空题和解答题三种题型,选择题、填空题是基础,共76分,解答题是提高分数的关键。

攻克这三种题目的解法,特别是选择题的解法,它解法灵活多样,如:直接法、代入法、特值法、排除法、数形结合法等。

掌握多种这些解题方法,会使解答试题速度快而准确,同时为解答最后六道解答题赢得了更多的时间。

总之,数学学科是能在短时间内提高成绩的一门学科,数学是高考中三科综合科之中一门拉开综合成绩的重要学科。

学数学有方可寻,有法可学,望你抓住机遇,充分发挥自己的个性,不盲目跟风,随波逐流。力求温故知新,利用领悟和理解攻克数学知识难点真正提高数学成绩。


垂径定理知二推三什么意思,垂径定理知二推三详细证明(4)

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.