以典型牌号Inconel 718牌号合金(对应国内GH4169)为例,该牌号自20世纪60年 代成功研发以来,便广泛应用于航空发动机等领域,截至目前仍然占镍基高温合金 的主导地位。
该合金长期主导高温合金的供给结构。Inconel 718合金自20世纪60年代初被美国 INCO Huntington Alloys (Special metals. Co.前身)发明以后,由于其无商业或者知 识产权限制,高温合金供应商可以大批量生产该牌号合金的高温合金产品;且强化 相析出较慢,高温下有较高强度,具备较好的可铸性和可焊性,加工成形更容易;因 此,Inconel 718成为应用最广的一款高温合金牌号。在20世纪80年代推出的PW4000 发动机中,IN718合金质量占比镍基合金达到57%(PW4000中的高温合金主要为镍 基和铁基合金);20世纪90年代中,发动机产商GE购买的锻造合金中,IN718的占 比常年位于60%以上;直到现在,IN718的应用规模在高温合金中仍占据主导地位, 据Gminsights数据,2019年全球高温合金细分市场规模中,仅IN718的份额便占到一 半左右。
核心牌号合金的技术变革较慢,重要合金牌号的技术发展未能动摇主要格局。从核 心牌号IN718的衍生替代高温合金的发展历史来看,IN718的每次潜在衍生替代高温 合金出现的间隔时间都较长,且多数衍生替代高温合金未在性能和造价上同时优于 IN718合金:在20世纪50年代早期,主要使用Waspaloy和Rene41牌号合金,不过此 类合金硬度较高,可锻性和可焊性较差,容易在热加工过程中产生裂纹;
20世纪60 年代,IN718合金出现,其性能和造价都具有一定优势,开始逐渐取代原有合金;20 世纪80年代,GE研发Rene220铸造合金以替代IN718合金,尽管Rene220和IN718 性能相近,但Rene220的Co、Ta含量较高,因此造价相对IN718更贵;20世纪90年 代,GE研发991合金,性能接近Waspaloy,但仍含较高的Co、Ta,因此造价仍相对 较高;21世纪初,在美国空军实验室资助的“金属可行性计划”背景下,ATI在原IN718 的基础上增加Al和Ti的含量,进一步研发的718Plus合金在承温和强度性能上优于以 往主要合金IN718和Waspaloy,且造价具有相对优势,被视为传统718合金的最佳替 代品。
2.下游发动机市场对于高可靠要求,使得新牌号合金在发动机部件上的广泛应用需要经历较长的“验证期”,继而提高新供应商进入的难度及时间。从核心牌号IN718 合金在下游部件上的应用历史来看(以P&W发动机制造商为例),IN718合金在发动 机各部件应用的逐步扩大经历了较长的时间:自20世纪60年代IN718发明后的几年 间,下游以发动机制造厂商为主,先后发布了针对IN718材料应用的系列规范,涵盖 棒材、锻件、薄板等;不过,由于早期生产的IN718在冶炼上还达不到高水平,因此 20世纪60~80年代间,发动机和高温合金行业仍对IN718的冶炼和加工进行改进,核 心在于工艺参数的优化,以提高纯度和减少偏析,在这期间P&W将IN718应用于的 部件领域也较少。
截至20世纪70年代早期,除了对IN718的进一步优化以外,还考虑 到新材料应用于新部件所需要“验证”的时间和成本,此时发动机部分核心部件(如 涡轮盘)仍继续使用上一代合金Waspaloy。直到20世纪80年代,行业对新材料IN718 的冶炼、加工和性能特点都较为熟悉后,IN718在发动机部件上的应用才迎来高潮, P&W在1980年以后对IN718合金在部件上的应用也才较为集中的爆发。
(三)为何走向多寡头:性能与成本的平衡决定单一工艺难以赢者通吃
不同类型高温合金性能存差异,各自适用的温度和部件也有不同。航空发动机涡轮 盘对力学性能要求更高,因此主要使用加工成形后强度更高的变形高温合金和粉末 冶金高温合金(包括氧化物弥散强化高温合金);涡轮叶片具有空腔等复杂结构且 对承温要求较高,因此主要使用更易于成形加工且承温能力更高的铸造高温合金和 金属间化合物高温合金;导向器对承温要求较高,主要使用铸造高温合金和金属间 化合物高温合金;燃烧室主要使用变形高温合金和粉末冶金高温合金。
不同高温合金技术及工艺成熟度或存差异。从世界高温合金的发展历史和我国对应 高温合金牌号出现的时间点来看,较早出现的是变形高温合金,采用锻压的成形方式。之后由于航空发动机叶片出现中空冷却复杂结构,原有变形高温合金难以满足 成形加工要求,铸造高温合金便成为新的叶片用高温合金,并在其他复杂结构件中 逐步扩大应用。粉末冶金高温合金的研究始于20世纪70年代,其粉末挤压成形和变形高温合金的锻压成形有所不同,成形效果优于变形高温合金,因此在涡轮盘上有 替代部分变形高温合金的趋势。
金属间化合物高温合金是出现时间较晚的高温合金, 其施压形变加工较难,因此主要采用铸造的成形方式;金属间化合物高温合金的质 量更轻(据钢研高纳官网,可减重30%~40%),强度更高,因此在叶片等结构中也 逐渐推广,主流金属间化合物高温合金可归类为原料升级后的铸造高温合金。
受限于性能及成本差异,即使在同一结构,高温合金的使用范围也有较大不同。以 涡轮部件为例,涡轮部件的工作条件十分恶劣,其主要零件不仅比压气机零件承受 着更大的机械载荷,而且还承受着较大的热载荷以及燃气的腐蚀。随着涡轮前燃气 温度的不断提高,尽管有先进的冷却技术作为补充,对材料的要求也愈来愈高。
(四)为何走向多寡头:不同工艺路线跨度大,均要求较高的经验壁垒
高温合金从原料冶炼到最终成形的各环节均有较高的工艺壁垒。任何一款高温合金 具备工业应用价值的基本前提是,以变形高温合金为例,能够运用真空感应冶炼 (VIM) 电渣重熔(ESR) 真空电弧重熔(VAR)三联冶炼工艺制备大尺寸铸锭/ 母合金,并经过特定的成形工艺完成成形并对微观组织进行特定调控,最终将合金 锭制备为大规格棒/盘/环等标准件材。各类高温合金的制备从原料冶炼到不同的成形 工艺均有较高的工艺壁垒,工艺的进步很大程度上依赖于反复试验的边际参数优化、 重型加工设备的打造和人工经验的积累。
不同高温合金制备工艺路径差异较大,行业内企业跨路线生产的壁垒较高。不同高 温合金之间的工艺环节、工序目标、参数控制、工序过程存在较大差异,如铸造高温 合金核心关键工序在于熔炼与浇注,而变形高温合金关键工序包含真空感应熔炼、 保护气氛电渣重熔、真空自耗重熔及锻造(按照客户需求),这即导致对于行业内相 关企业,想要在短时间内突破不同高温合金的技术路线壁垒存在较大难度。
各工艺稳定存续时间长,代际进步耗时长。从工艺发展历史来看,高温合金各类型 工艺的应用时间长,同一类型工艺内部的代际跨越也需要很长的时间。变形高温合 金从上世纪40年代出现至今已有多年历史,目前仍然在大量使用。初代铸造高温合 金从上世纪50年代中使用到60年代中,其后出现定向凝固铸造高温合金,单晶铸造 高温合金也从第一代发展到第四代,每代跨越耗时数余年,目前仅单晶铸造高温合 金就已经使用数十年,且国际上仍在发展第五、第六代单晶铸造高温合金。粉末冶 金高温合金从20世纪70年代使用到现在已有较长的历史,同时代际之间的技术更迭 也需要花费较长时间。(报告来源:未来智库)
(五)高资本开支强化竞争壁垒,高固定成本对企业的产品结构要求高
不同工艺路线高温合金生产制备的不同,导致所需的资本开支有较大差异;性能及 成本要求牵引高温合金及相关锻铸件大型化发展,即使是同一工艺路线,尺寸的跨 越也需要大规模资本开支的加持;大规模资本开支是高温合金厂商难以实现横向拓 展不同工艺的壁垒之一,而具备其他材料/业务可实现部分设备共用的企业,其对抗 行业需求短期波动的能力也相对更高。