3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
要点诠释:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:
(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;
(2)不能将数字的指数一同计算.
要点二、多项式1.多项式的概念:几个单项式的和叫做多项式.
要点诠释:“几个”是指两个或两个以上.
2. 多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.
要点诠释:(1)多项式的每一项包括它前面的符号.
(2)一个多项式含有几项,就叫几项式,

3. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.
要点诠释:(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.
4.升幂排列与降幂排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;若按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

要点诠释:
(1)重新排列多项式时,每一项一定要连同它的正负号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.
要点三、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.
要点诠释:
(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.
(2)同类项与系数无关,与字母的排列顺序无关.
(3)一个项的同类项有无数个,其本身也是它的同类项.
02 典型例题讲解例1、(2015•巴中)

A. a=3,b=1 B. a=﹣3,b=1 C. a=3,b=﹣1 D. a=﹣3,b=﹣1
【答案】 A
【分析】利用同类项的定义列出方程组,求出方程组的解即可得到a与b的值.
