来自于澳大利亚国际射电天文研究中心(ICRAR)、科廷大学的天文学家詹姆斯·米勒·琼斯是本次观测的领导者,他说:“我们通过射电望远镜对天鹅座-X1中这个人类历史上第一个被发现的黑洞进行了精确的观测……”
超长基线阵列是一个跨度达到了8000公里的射电望远镜,其观测精度是哈勃太空望远镜的500倍。正是通过它的强大观测能力,以及以往数据的参考,同时消除了黑洞产生的喷流所造成的系统误差之后,研究团队才获得了这个前所未有的精确结果。
在此之前,科学家们观测到的大质量恒星级黑洞都是利用引力波发现的,而通过电磁波的方式发现的最大黑洞是M33 X-7,其质量大约是太阳的15.65倍。而在这一次数据更新后,天鹅座-X1黑洞也成为了“不通过引力波而发现的最巨大恒星级黑洞”。而且,不论是天鹅座-X1还是M33 X-7,都对“我们关于大质量恒星如何演化为黑洞的理论形成了挑战”。
我们知道,恒星在发光发热的同时,还会以恒星风的形式向外抛射自己的物质。“不过,如果要形成如此大质量的黑洞,我们就不得不降低这颗明亮的恒星在其一生之中所损失的质量。”澳大利亚ARC引力波发现卓越中心(OzGrav)的理论天体物理学家伊利亚·曼德尔表示。
科学家们据此推测,天鹅座X-1的黑洞在形成之前,其前身大质量恒星大约是太阳质量的60倍。在进入到演化末期时,它也有一个不一样的死亡方式,那就是先把自己的外壳炸掉,然后跳过超新星爆发的环节直接坍缩为黑洞。
而随着这个黑洞质量的修正,它的伴星HDE 226868的质量也比以往的数据有所提高,大约是太阳的40倍。未来,这颗同样质量惊人的恒星也会以黑洞的形式收场,届时天鹅座X-1将会变成双黑洞系统,甚至有望上演双黑洞碰撞的精彩场面。不过,考虑到两颗天体之间的距离,科学家认为它们恐怕即使宇宙年龄翻倍,也就是再过138亿年,它们都无法碰撞。
在本次研究中,我国科学家团队主要通过对黑洞的X射线进行观测和分析,精确测量了黑洞的自转速度,令他们震惊的是,这个黑洞的自转速度相当惊人,甚至超过了95%光速!
在此之前,科学家通过引力波探测到的双黑洞相撞事件中的两个主角自转速度都相当慢,这意味着天鹅座X-1的演化方式和以往的双黑洞有所不同。
总之,作为人类发现的第一个黑洞以及它所在的双星系统,天鹅座X-1对于我们来说仍然具有重要的意义。趁着蓝超巨星尚未爆发之前,科学家们也会把握住机会对它们进行观测,并且预测双黑洞可能的演化路径。
当然了,也有人可能会关心,天鹅座X-1的数据未来会不会又出现变动?谁知道呢?毕竟天体距离的测量实在是非常困难,科学家们已经不止一次修正过天体的距离了,随着越来越多的天体距离推测方法被提出,相信这样的数据也会越来越准确的。