等腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形—等边三角形的性质与判定应用也很广泛,有一个角是30°的直角三角形的性质是证明线段之间的倍份关系的重要手段.
在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边上的高较为简便.在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰.
等腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形—等边三角形的性质与判定应用也很广泛,有一个角是30°的直角三角形的性质是证明线段之间的倍份关系的重要手段.
在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边上的高较为简便.在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰.
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.