向量的模和向量怎样换算,向量的模怎么算

首页 > 教育培训 > 作者:YD1662023-06-13 02:05:26

其中 Q 为 正交矩阵, Λ 为实对角矩阵。

(4)实对称矩阵不同特征值的特征向量正交。

3.3.3 正定、半正定、负定、半负定

对于一个n×n的实对称矩阵M, 当且仅当它对于所有非零实系数向量z都有:

向量的模和向量怎样换算,向量的模怎么算(17)

其中zT表示z的转置。

NOTE: 对于复数对称阵,也有同样概念,但此处不考虑。

4. 特征值和特征向量

4.1 定义

对于n x n方阵A,若标量λ和n维非0列向量v满足:

向量的模和向量怎样换算,向量的模怎么算(18)

那么称λ为A的特征值,v称为对应于特征值λ的特征向量。

4.2 几何意义

λ反映的是:特征向量v的长度在线性变换A下缩放的比例。

如果特征值为正,则表示v在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

4.3 相关概念

【特征空间】:n阶方阵A所有具有相同的特征值λ的特征向量和零向量一起,组成了一个向量空间,称为A的一个特征空间。

【几何重数】:这个特征空间如果是有限维的,那么它的维数叫做λ的几何重数。

【主特征向量】: 模最大的特征值对应的特征向量是A的主特征向量。

【谱】:在有限维向量空间上,一个方阵A的其所有特征值的集合就是A的谱。

【标准正交基】:是元素两两正交的基。称基中的元素为基向量。

4.4 特征向量与系数方程

特征向量也可以看作是关于系数λ的方程:T(x) = λx 的非零解。

4.5 特征值的性质

n阶方阵A=(aij)有n个特征值(其中可能包括重复值)λ1, λ2, … λn,则有

(1)这n个特征值的和为A对角线上各个数的和: λ1 λ2 … λn = a11 a22 … ann

(2)这n个特征值的乘积为A的行列式:λ1λ2…λn = |A|

(3)不相等的特征值所对应的特征向量线性无关。

(4) 如果一个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵。


鸣宇淳

沙发

上一页12345末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.