spss时间序列预测步骤,时间序列预测模型案例

首页 > 大全 > 作者:YD1662022-12-24 12:42:17

spss时间序列预测步骤,时间序列预测模型案例(1)


时间序列(time series)是系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。它是系统中某一变量受其它各种因素影响的总结果。


研究时间序列主要目的可以进行预测,根据已有的时间序列数据预测未来的变化。时间序列预测关键:确定已有的时间序列的变化模式,并假定这种模式会延续到未来。






spss时间序列预测步骤,时间序列预测模型案例(2)


时间序列的基本特点


假设事物发展趋势会延伸到未来

预测所依据的数据具有不规则性

不考虑事物发展之间的因果关系

时间序列数据用于描述现象随时间发展变化的特征。






spss时间序列预测步骤,时间序列预测模型案例(3)


时间序列考虑因素


时间序列分析就其发展历史阶段和所使用的统计分析方法看分为传统的时间序列分析和现代时间序列分析,根据观察时间的不同,时间序列中的时间可以是可以是年份、季度、月份或其他任何时间形式。


时间序列分析时的主要考虑的因素是:


l长期趋势(Long-term trend)


时间序列可能相当稳定或随时间呈现某种趋势。

时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function)。


l季节性变动(Seasonal variation)


按时间变动,呈现重复性行为的序列。

季节性变动通常和日期或气候有关。

季节性变动通常和年周期有关。


l周期性变动(Cyclical variation)


相对于季节性变动,时间序列可能经历“周期性变动”。

周期性变动通常是因为经济变动。


l随机影响(random effects)


除此之外,还有偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。时间序列除去趋势、周期性和季节性后的偶然性波动,称为随机性(random),也称不规则波动(irregular variations)。






spss时间序列预测步骤,时间序列预测模型案例(4)

首页 12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.