(1) 根据an^2+2an=4Sn+3有: a(n+1)^2+2a(n+1)=4S(n+1)+3 于是 an^2+2an=a(n+1)^2+2a(n+1)-4a(n+1)=a(n+1)^2-2a(n+1) (an+1)^2=[a(n+1)-1]^2 化简得到 a(n+1)=-an a(n+1)=an+2 因为an>0,所以只有 a(n+1)=an+2满足要求,也就是他是等差数列 又因为n=1时,a1^2+2a1=4a1+3,a1=1 an=1+2(n-1)=2n-1 (2) bn=1/(2n-1)(2n+1)=0.5*[1/(2n-1)-1/(2n+1)] Sbn=b1+b2+....+bn =0.5(1/1-1/3)+0.5(1/3-1/5)+....+0.5[1/(2n-1)-1/(2n+1)] =0.5-0.5/(2n+1)