如果两随机变量相互独立,则联合密度函数等来于边缘密度函数的乘积,即f(x,y)=f(x)f(y)。如果两随机变量是不独立的,那是无法求的。例:
联合密度函数用公式f(x,y)=fx(x)fy(y)求得。联合密度函数亦称多维分布函数,随机向量的分布函数,以二维情形为例,若(X,Y)是二维随机向量,x、y是任意两个实数,则称二元函数。
联合密度函数的几何意义是:如果将二维随机变量(X,Y)看成是平面上随机点的坐标,那么分布函数F(x,y)在(x,y)处的函数值就是随机点(X,Y)落在以点(x,y)为顶点而位于该点左下方的无穷矩形域内的概率。