以e为底指数函数求极限。
想一下指数函数的图像,x→-∞时为0,x→+∞时为无穷大,x→0-时1/x是-∞,e^1/x→0,直接用0替换就行了,x→0时1/x时是+∞,e^1/x→+∞,正无穷大没法直接带。
a>1时,则指数函数单调递增;若0单调递减的。
可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

基本性质在函数中可以看到:
(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为(0, +∞)。
(3) 函数图形都是上凹的。
这是e^x的图像,其实也是任何底数大于1的指数函数的大致图像。
从这个图上可以知道,当指数趋近于-∞的时候,函数值趋近于0;当指数趋近于+∞的时候,函数值趋近于+∞ 所以如果是e^1/x的话,当x从大于0的方向趋近于0的时候,1/x是趋近于+∞的,那么e^1/x趋近于+∞ 当x是从负数方向趋近于0的时候,1/x是趋近于-∞的,那么e^1/x趋近于0 关键是e^x,在x趋近于±∞的时候,极限不一样。