一知识梳理:
等腰三角形的定义
1、等腰三角形
有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.
2、等腰三角形的作法
已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.
作法:1.作线段BC=a;
2.分别以B,C为圆心,以b为半径画弧,两弧
相交于点A;
3.连接AB,AC.
△ABC为所求作的等腰三角形
3、等腰三角形的对称性
(1)等腰三角形是轴对称图形;
(2)∠B=∠C;
(3)BD=CD,AD为底边上的中线.
(4)∠ADB=∠ADC=90°,AD为底边上的高线.
结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.
4、等边三角形
三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.
要点:
(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=
.
(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.
等腰三角形的性质
1.等腰三角形的性质
性质1:等腰三角形的两个底角相等;
推论:等边三角形的三个内角都相等,并且每个内角都等于60°.
性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.
2.等腰三角形中重要线段的性质
等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.
要点:这条性质,还可以推广到以下结论:
(1)等腰三角形底边上的高上任一点到两腰的距离相等。
(2)等腰三角形两底边上的中点到两腰的距离相等.
(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.
(4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等.
等腰三角形的判定定理
1、等腰三角形的判定定理
如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.
要点:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.
(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.
2、等边三角形的判定定理
三个角相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.