第2阶段:动态全局路由表
后来,“阿帕网/互联网”的规模猛增,路由器数量也跟着猛增,隔三差五都有新的路由器冒出来。再用“静态路由表”这种机制,(编辑路由表的)管理员会被活活累死。于是改用“动态路由表”,并引入某种“路由发现机制”。但“路由表”依然是【全局】滴。
第3阶段:动态分级路由表
再到后来,全球的路由器越来越多,成千上万,再搞“全局路由表”已经不太现实了——
一方面,“全局路由表”越来越大(查询的速度就越来越慢)
另一方面,由于互联网的流量越来越大,每来一个数据包都要查表,查询越来越频繁。
于是,路由器开始吃不消了。为了解决困境,想出一个新招数:引入“分级路由”(hierarchical routing)。所谓的“分级路由”就是:把整个互联网分为多个大区域,每个大区域内部再分小区域,小区域内部再分小小区域 ...... 看到这里,熟悉“数据结构与算法”的同学就会意识到——这相当于构造了一个【树状】层次结构。
有了这个层次结构,每个路由器重点关注:自己所在的那个最小化区域里面的网络拓扑。如此一来,每个路由器的“路由表”都会大幅度减小。
去年(2020)俺写了一篇博文《“政治体制”与“系统健壮性”——基于“复杂性科学”的思考》,其中介绍了“CAS”(复杂自适应系统)的概念。互联网的路由机制,就是一个典型的 CAS。
如果把互联网视作一个系统,每个公网上的路由器都是一个自适应的主体。假如某个地区的网络流量突然暴涨,骨干网路由器会自动分流;假如因为地震或战争,导致某个地区的骨干网路由器全部下线,周边地区的路由器也会自动避开这个区域 .....
所有这些工作,【不需要】依靠任何最高指挥中枢,去进行协调。
相反,如果互联网的路由系统中,设立了某种“中央委员会”进行实时调度,那互联网早就完蛋了,根本无法成长为今天这种规模。
(技术菜鸟可以跳过这个小节)
前面聊“互联网诞生”,说到兰德公司的“Baran 方案”。该方案对当时的电信系统提出几大革命性的变化,其中之一就是“分组交换”技术(也称“数据包交换”or“封包交换”)。
一般来说,网络层的设计有两种截然不同的风格:【电路交换 VS 分组交换】。有时候也分别称之为“有连接的网络层 VS 无连接的网络层”。此处所说的“连接”指的是某种“虚电路”(洋文叫做“virtual circuit”,简称 VC)。
要理解“虚电路”,首先要从老式的电话系统说起。
最早期的电话,既没有拨号盘也没有按键,全靠一张嘴。当你拿起电话,先告诉接线员你要打给谁,接线员会用一根跳接线,插入电话交换设备的某个插孔,从而把你的电话机与对方的电话机相连。于是建立了一条两人之间的电话通路,也就是“电路”。你可以把“接线员”想象成某种“人肉路由器” :)
后来发明了“自动电话交换机”,导致“接线员”全体下岗。虽然自动化了,但原理还是一样——当你在电话上拨了某人的号码,电话局的交换机会自动选择一条线路。只有当这条线路建立起来,对方的电话才会响。一旦双方开始通话,双方之间的语音都是通过这条线路传输。并且这条线路是独占的——只要通话不挂断,这条线路就不会再分配给其他人使用。
前面提到“互联网诞生的历史”,当时军方推动的“Baran 方案”被 AT&T 断然拒绝。因为这个方案完全颠覆了传统的电话系统——
颠覆之1:把“模拟信号”颠覆为“数字信号”(这点比较好理解,俺就不解释了)
颠覆之2:把“星形拓扑”颠覆为“网状拓扑”(关于这点,前面的小节已经讨论了)
颠覆之3:把“电路交换”颠覆为“分组交换”(这就是本小节的重点)
为了帮大伙儿理解上述第3点,举个例子:
假设主机 A 要向主机 B 发送一大坨数据。因为数据太多,肯定要分成好几坨小一点的(分成多个数据包)。如何把这些数据包发送给对方捏?
“电路交换”的实现方式
在发送数据之前,要先建立连接通道(通过路由算法,找出 A & B 之间的某条通路)。这条通路就是所谓的“虚电路/VC”。一旦 VC 建立,每一个数据包都是从这条拓扑路径进行路由。
“分组交换”的实现方式
在发送数据之前,【不需要】建立通道,让每个数据包独立进行路由。这种情况下,这几个数据包可能会走【不同的】拓扑路径。因此,数据包到达的顺序与发送的顺序【不一定】相同。接收方收到所有数据包之后,还要自己进行排序。
维基百科上有一个 GIF 动画(这个链接),比较直观地演示“分组交换/封包交换”的效果。由于这个动画稍微有点大(超过 1MB),俺就不贴到博文中了。
当时的电话系统主要承载语音传输,“电路交换”显然性能更高。那为啥 Baran 的设计要采用“分组交换”捏?俺又要再次提到【效率 VS 健壮性】之间的矛盾与均衡。
对于“电路交换”,一旦建立连接,同一个连接的所有数据都走相同的路径(会经过完全相同的路由器)。也就是说,传输的过程中,如果某个路由器挂掉了(网络掉线 or 硬件当机 or 软件崩溃)。那么,该路由器正在处理的 N 个连接全都要报废。而“分组交换”则更加灵活——即使某个路由器挂掉了,后续的数据包会自动转向另外的路由器,损失很小。
“Baran 方案”之所以采用“分组交换”的设计,因为人家这个方案是提交给军方用来应对【全面核战争】滴,当然要考虑健壮性啦。
话说这两种交换机制,各有很多支持者,并分裂为两大阵营,分别是:“电信阵营 VS 互联网阵营”。两大阵营的口水战持续了 N 年,都无法说服对方。到了后来设计 OSI 模型的时候,为了保持中立性与通用性,OSI 模型本身并没有强制要求网络层采用哪一种风格。
经过几十年之后,咱们已经可以看出来:“互联网阵营”占据主导地位。如今,连电信系统都是架构在互联网之上。
网络层的协议有很多。由于“互联网”已经成为全球的事实标准,因此俺只列出属于“互联网协议族”的那些“网络层协议”:
IP 协议(含 IPv4 & IPv6)
ICMP
IGMP
IPSec
......
(考虑到篇幅)俺不可能具体细聊这些协议,只是贴出每个的维基百科链接,感兴趣的同学自己点进去看。
对上述这些协议,最重要的当然是 IP 协议。如果你想要深入了解 IP 协议,可以参考如下这本书。关于 IP 协议的书,此书的影响力最大。这本书共3卷,通常只需看第1卷。
《TCP-IP 详解》
对于电脑主机(含移动设备),网络层的协议实现通常包含在操作系统自带的网络模块中(也就是“操作系统协议栈”)。具体参见如下示意图。
另外,还有一些专门的【3层】网络设备,也提供网络层的功能(参见本章节的后续小节)。
当年设计阿帕网的时候,采用了【4字节】(32比特)来表示“网络层地址”(也就是 IP 地址)。
“IP 地址”的含义很重要,俺有必要解释一下:
咱们平时所说的 IP 地址,采用【点分十进制】来表示。就是把地址的4个字节,先翻译为十进制,然后每个字节用一个小数点分隔开(参见如下示意图):