它还能通过对扬声器温度与振膜偏移情况的实时监控,在保证频响与响度的前提下,尽可能减少失真与破音。这就依赖于 NXP 自己的一套独立的D类升压算法了。当年的 Nexus 6 和 Moto X 都是采用了这个音频放大方案。后来,包括 Skyworks 和苹果一直御用的 Cirrus Logic 也采用了类似的升压技术。
与此同时,在 10mm~30mm 这个直径的微型扬声器下,采用新型振膜和新型UV胶的振膜逐渐普及,提高了微型振膜的振幅。这使得现在的手机厂商,能在更小的扬声器体积里,实现比几年之前更宽阔的频响范围和稍好一些的动态了。
不过,这离之前说到的三个小标准,只是改善了频响范围和响应时间,还差一个混响空间。
首先我们要知道,声场这个概念,是由声源点与空间两个因素体现出来的。当有一个声源点的时候,我们可以通过双耳效应确定它的方向。再通过声音在介质中的传播特性,来确定它的远近,一个特性是声音在传播中的自然衰减。第二个是声音在空间内的反射与散射。这样,我们就能准确的知道它的位置了。
接着,当有左右两个声源点的时候,也就是我们常见的双声道系统时,两个声源发出的声音,会有声音信息的叠加与抵消,而它们之间的比例,就决定了我们觉得自己听见的声音是更左还是更右。
当然了,这个声音无论怎么偏,它的声场边界也一定是在扬声器的物理位置范围内。回头看看手机,体积就这么一点大,即使是双扬声器,左声道和右声道也就差个十几厘米,这声场再大能大哪里去?难道这第三个问题就解决不了了么?
虚拟环绕声技术的出现,让人们在绝望中又看到了希望。
这个技术,说白了就是欺骗人的耳朵。怎么欺骗呢?通过听觉心理学。根据以前我们科普过的那一堆效应,对音频信号进行处理,抵消和延迟一部分声音,让耳朵有错误的时间判断或是响度判断。这样,就能让我们觉得,声音是从更左或者更右的位置发出来的。
下一步,补足从声源点到你耳朵之间的,也就是声音在介质中传播过程中的衰减。按照不同频率的衰减幅度,去调整声音,可以让我们觉得声音有远近。而混响信息稍微麻烦点,因为手机很难像一些家庭影院一样利用墙壁反射来扩大混响。因此目前小型设备,普遍使用 HRTF ,头部相关转换函数。
我们知道,耳廓是我们接收声音的第一道关,它本身结构比较复杂,不同方向的声音发射到外耳廓处,在这里呈现出的散射模型是截然不同的。除了耳朵本身,我们的头骨也是一个传递声音的途径。头骨本身可以视为一个巨大完整的共鸣箱,不同方向的声音也会带来不同的共鸣模型。当然,这个整个的过程,每个人都是不同的。而头部相关转换函数,简单来说就是通过采集不同人的人头录音数据,综合出的一套算法。
在之前的双声道音频的基础上,加上这个相关函数,理论上就能给人带来360度的方位感,不过这个还是有条件的,比如你的头部得在手机正面的一个区域内,才能获得最好的体验,还有就是你的耳朵形状不能长的太奇葩,否则可能会听不出来什么环绕效果。
这种结合听觉心理学与 HRTF 的相关技术,已经大量运用在业界主流的虚拟环绕声方案上。部分安卓手机可以刷入杜比音效。打开腾讯、优酷、爱奇艺等等视频网站的杜比专区,就能感受到了。而支持各自手机的苹果 iTunes 和华为视频直接就能买到 Dolby Atmos 的资源,只是国区苹果你懂的,目前 iTunes 商店暂不可用。
我很高兴的看到,2018 年很多厂商越来越重视手机的外放音质。手机发展到今天,早就过了性能竞赛的时代,越来越看重全方位的体验与实力。就比如手机的外放音质这一类,过去我们为了一颗好的 SoC,不得不接受其它地方短一点。但在将来,这些短板一定是要补上的。在这个过程中,越来越好的软件算法,让手机在小小的体积里突破物理性的限制,实现超越其体积的体验,这个过程是不是有点熟悉?对啊,手机拍照也是通过算法在远小于单反的 CMOS 体积里做到了弯道超车。
因此我有理由相信,手机上的音频技术还有进步空间,比如跟踪你的头部位置来建立实时的声场,根据AI算法给不同场景调整外放的频响与音效之类的。说不定有一天手机的外放音质也能好到让厂商在发布会单独吹个牛,而你自己玩游戏时打开外放,不再是没带耳机或者蓝牙音箱时的妥协,而会变成是一种享受。