cosα=负的五分之四
阿尔法属于二分之派到派,,
所以
sinα>0
且
sinα=√1-cos²α=5分之3
tanα=sinα/cosα=-3/4
所以
tan(α+π/4)
=(tanα+tanπ/4)/(1-tanαtanπ/4)
=(-3/4+1)/(1+3/4)
=(1/4)/(7/4)
=1/7
cosα=负的五分之四
阿尔法属于二分之派到派,,
所以
sinα>0
且
sinα=√1-cos²α=5分之3
tanα=sinα/cosα=-3/4
所以
tan(α+π/4)
=(tanα+tanπ/4)/(1-tanαtanπ/4)
=(-3/4+1)/(1+3/4)
=(1/4)/(7/4)
=1/7
Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.