智能交通系统的划分,智能交通系统评价分类和依据

首页 > 车主 > 作者:YD1662023-11-29 23:46:50

图2美欧等国的车联网示范测试项目

图3 美国MTC建设的网联自动驾驶测试模拟城市(M-city)


除美国外,欧洲以及日本等国都开展了大量对车联网技术的研究与应用示范。欧盟eCoMove项目展示了车联网技术对于降低排放和提高通行效率的作用,综合节油效果可达到20%,simTD项目2014年起开展“荷兰-德国-奥地利”之间的跨国高速公路测试,验证基于车联网的智能安全系统。日本Smartway系统2007年开始使用,可提供导航、ETC、信息服务、驾驶辅助等多种功能,基于车路协同的驾驶安全支援系统(DSSS)2011年开始使用,可以提供盲区碰撞预警、信号灯预警、停止线预警等多种功能。
我国清华大学、同济大学和长安汽车等高校与企业合作,在国家“863项目”的支持下开展了车路协同技术应用研究,并进行了小规模示范测试,各汽车企业也在开展初步研究。2015年开始,在工信部支持下,上海汽车城、中国汽车工程学会、清华大学、同济大学和上海汽车等单位开始在上海建设智能网联汽车示范区,旨在推动智能化与网联化技术的成熟与应用。
相对而言,在该领域我国缺少类似美日欧的大型国家项目支撑,各企业间未能形成合力,发展相对较慢。美日欧等国在车联网技术发展的时间表、标准等方面已趋于统一,实质的战略同盟已经形成,我国已经有丧失未来话语权的趋势。

自动驾驶技术路线之争
“自动驾驶”(Automated Driving)是智能汽车发展的最终阶段。从信息获取渠道分,自动驾驶的实现方式包括“自主式”(Autonomous)和“网联式”(Connected)两种。根据应用对象不同,又可以划分为“军用型”方案和“民用型”方案两类。
谷歌的自动驾驶汽车始终是吸引眼球的焦点,主要得益于其高调的宣传以及谷歌公司本身的高科技形象。实际上,谷歌的自动驾驶汽车代表了军用自主式自动驾驶的技术路线,其技术源自美国国防部先进研究项目局(DARPA)。通过顶置激光雷达等复杂传感系统对周围环境做全面感知,形成高精度数字地图,再根据高精度地图进行轨迹规划与车辆自主决策及控制。其传感系统高昂的成本限制了商业化应用,同时传感器可靠性与车辆高速性能也有待验证。类似的,我国军事交通学院等单位研制的自动驾驶车辆也属于军用型方案。其优势是不依赖结构化道路,对环境进行全面感知,可在全地形条件下“找路”。
对于普通民用车辆而言,其行驶环境是相对稳定的结构化道路,道路具有车道线、路沿、路标等明显特征,利用这些特征可以降低对于环境感知系统的要求。这也是诸如奥迪、奔驰、沃尔沃等汽车企业在开发自动驾驶车辆中的基本出发点。采用较低成本传感器,充分借助V2V/V2I协同技术,进行有效的信息融合,实现可大规模商业化的自动驾驶,这是不同于谷歌的自动驾驶技术路线。同时,由于汽车企业本身对于车辆结构、控制系统等的掌控,其自动驾驶汽车的传感器集成度、可靠性、高速性能等往往优于IT企业开发的自动驾驶汽车。
2015年7月,DARPA在最新发布的无人驾驶技术标准中,已经提出了要将原谷歌安装的顶置激光雷达进行小型化,通过多个低成本的分布式激光雷达代替原技术方案,实现对车辆周边环境的感知。在福特等公司最新展示的自动驾驶车辆中,就已采用了多个小型低成本的激光雷达的技术方案。

二、基本结构1、初级阶段网联汽车的基本功能

  一般来说,以2010年国际Telematics产业联盟(ITIF)正式成立为标志,定为网联汽车信息化时代的发轫之年,也就是说,网联汽车的初级阶段是以Telematics技术为代表。

  所谓Telematics是远程通信技术(Telecommunications)与信息科学技术(Informatics)的合成词,意指通过内置在汽车、航空器、船舶、火车等运输工具上的计算机网络技术,借助无线通信技术、GPS卫星导航技术,实现文字、图像、语音信息交换的综合信息服务系统。

智能交通系统的划分,智能交通系统评价分类和依据(5)

  那么,为了避免造成驾驶者分神,信息输入方式主要采用语音输入或触摸屏(触控面板);信息输出方式则为中尺寸面板(LCD或OLED)、语音输出或投射在汽车前挡风玻璃的抬头显示(Head-Up Display,HUD;语音命令和免提控制,如“导航到最近的加油站”,更复杂的选项可能像是苹果Siri的风格

智能交通系统的划分,智能交通系统评价分类和依据(6)

  Telematics特点在于大部分的应用系统位于网络上(如通讯网络、卫星与广播等)而非汽车内。驾驶者可运用无线传输的方式,连结网络传输与接收信息与服务,以及下载应用系统或更新软件等,所耗的成本较低,主要功能仍以行车安全与车辆保全为主。

智能交通系统的划分,智能交通系统评价分类和依据(7)

  就目前而言,网联汽车可通过互联网、3G/4G等网络进行接入,可提供交通信息共享,如道路拥堵情况、车流量等,还有碰撞安全等一系列的安全呼叫与警报,可通过相应的应用程序告知出发时间、或提醒到达时间,如BMW的互联驾驶。

  (1)卫星定位导航与车况自检测

  通过GPS卫星定位技术确定失窃车辆的位置和行车路线,以便搜寻与追踪,追缴车辆并缉拿盗车贼。另外,还可以车辆性能与车况的自动监测、传输,进行多地、远程“专家会诊”,指导车辆维修等。

智能交通系统的划分,智能交通系统评价分类和依据(8)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.