光的速度为什么是每秒30万千米而不是更快一点或慢一点?一种新理论使我们离答案曙光更进了一步。
打开百度APP,查看更多高清图片
塞纳河左岸的巴黎天文台,墙上有一块展板,上面说光速是在1676年首次被测得的。其实,这一结果实属无心之得。当时,丹麦人奥拉·罗默是意大利天文学家乔凡尼·多美尼科·卡西尼的助手,他想弄清木星的一颗卫星相邻食之间的时间间隔为什么是变化的。罗默和卡西尼讨论认为,光速可能是有限的(在这之前,人们通常认为光的传播是在瞬时完成的)。最后,经过粗略计算,罗默得出结论:光线走过与地球轨道半径等长的距离所需的时间为10分钟或11分钟。
之后,卡西尼又改变了看法。他认为,如果光速有限,光的传播就需要时间,那么在土星的其他卫星上也应该观察到食的推迟现象,但实际上却没有。之后,人们对于光速问题颇有争议,直到1728年英国天文学家詹姆斯·布莱德雷发现了另一种测量光速的方式。以后的很多实验证实,罗默对光速的原始观测数据慢了25 %。今天,我们已经确定光在真空中的传播速度为每秒299792.458千米。
但光速为什么偏偏是这个数据,而不是其他呢?换句话说,光速是如何产生的呢?
150年前的电磁理论给了我们第一个重要的启示。苏格兰物理学家詹姆斯·克拉克·麦克斯韦指出,电和磁场的交变产生了一种可以运动的电磁波。麦克斯韦通过方程式计算出电磁波的速度,发现正好等于人们之前已知的光速。这有力地证明了光实际上是一种电磁波,而这一结论也很快得到验证。
1905年,研究有了突破性进展。阿尔伯特·爱因斯坦指出,光在真空中的速度c是宇宙中速度的极限。根据其狭义相对论,宇宙中没有任何物质的传播速度能超过光速。
然而,这两种理论都没有充分解释是什么决定了光速,或者什么可能决定光速。一种新理论认为,c的秘密也许可以从真空的本质中得以发现。
量子论提出之前,电磁学是解释光的完整理论。今天,电磁学仍然非常重要,但产生了一个问题。为了计算真空中的光速,麦克斯韦应用了两个常量的实验测量值,分别称作ε0和μ0,用来定义真空中电和磁场的特性。
问题在于,目前尚不清楚这些数据在真空中意味着什么。虽然电流和磁性实际上是由诸如电子这样的带电基本粒子运动形成的,但现在我们讨论的是真空中的问题。真空中应该不存在任何粒子,不是吗?
这就是量子物理学的切入点。高级版本的量子场论认为,真空并非真“空”,它只是一种“真空状态”,是量子系统能量最低的状态,是量子涨落产生瞬逝能量和基本粒子的竞技场所。
什么是量子涨落? 根据海森堡的不确定性原理,物理测量中总会有些不确定性。传统物理学认为,我们能够准确测得物体(比如静止的台球)的位置和动量,但这恰恰是不确定性原理否定的。海森堡认为,我们无法同时获得这两个数据,球似乎是轻微抖动的,只是这种抖动太微小,人类的测量器很难显示出来。但在量子真空中,会产生微小的能量爆发或类似的事情,这种爆发以基本粒子的形式突然产生又瞬间消失。