或许最有趣的无量纲常数是精细结构常数α。精细结构常数是1916年确定的,当时科学家用量子理论与相对论来解释氢原子光谱中的精细结构。根据这一理论,精细结构常数α表示围绕氢核运动的电子的速度和光速的比值。
今天,在量子电动力学(关于光和物质相互作用的理论)中,α是作用于电子上的电磁力强度,起着重要的作用。电磁力、引力、强核力和弱核力诠释了宇宙的工作机制。但到目前为止,仍然没有人能够解释α这个常数值,因为它既没有明显的前因作为参考,也缺乏有意义的关系线索。正如诺贝尔奖获得者物理学家理查德·费因曼所说:“这个数字自发现以来一直是个谜……它是物理学中的一个谜:一个魔数来到我们身边,可是没人能理解它。你也许会说是‘上帝之手’写下了这个数字,而‘我们不知道他是怎样下的笔’。 ”
不管它是出自“上帝之手”,还是来自一些形成常数的真正基础的物理变化过程,它身上明显的随意性让物理学家抓狂。为什么是这些数?难道就没有发生过变化?
一个解决这种令人烦恼的意外的办法就是直面问题。这让我们想起了人择原理。人择原理是一种哲学观点,认为人类在自然界观察到的一切是人类存在的缘故。简言之,我们之所以发现这样的常数,是因为如果它们非常不同,我们就不会发现。α值的一点细微变化都将改变宇宙。例如,如果恒星演化过程中没有产生碳,那么碳基生命便不可能存在。人们就是基于这样的考虑将α值限定为1/170至1/80,因为如果超出这个数值范围,我们将不复存在。
但这些争议并不排除存在常数值不同的其他宇宙空间的可能性。尽管那些宇宙空间也许并不适合人类居住,但想象一下我们能够看到些什么,也是值得的。
令人称奇的是,我们的这些宇宙定律都是紧密相关的。
比如,如果光速c再快点呢?对我们来说,光的传播速度非常快,没有什么能超越光速。但是光在远程传播中总能造成巨大的时间差。太空那么大,星光在到达我们之前也许已跋涉了亿万年。人类航天器的速度比光速要慢得多,这意味着我们永远无法将宇航员送到这些星球上去。不过往好处想,时距让望远镜变成了时光机,我们可以通过望远镜遥望亿万年前的星系。
假如光速c再快10倍,很多事情都会改变。地球上的通信问题将有所改善;远程无线电信号的时距会减少;美国航空航天局可以更好地遥控无人飞船和星际探测器。但另一方面,加快的光速会扰乱我们回看宇宙历史的能力。
那么假想一下时光放缓。我们可以看着它慵懒地从灯盏中悄然而出,慢慢地洒满整个房间。尽管这对我们的日常生活没有太大的用处,但有一个好处是,望远镜可以将我们带回宇宙大爆炸时期。(某种程度上,慢光已经在实验室里成功实现。1999年,研究人员将激光的速度降到了自行车的速度。之后,通过让光穿过超冷原子气体,一度将光速逼停。)
这么想想也很有趣。或许在不远的宇宙中,这些假想状况就真实地存在着。但是有一点令人称奇,那就是我们的这些宇宙定律都是紧密相关的。勒克斯指出,将光速c与量子真空结合研究,会明显地发现量子涨落“巧妙地嵌在”经典电磁学中,尽管电磁理论的提出比量子领域的发现早35年。这种关联也恰好是量子效应影响整个宇宙的一个绝好实例。
如果存在多个宇宙,应用不同的常数值,根据不同的宇宙定律层层展开,人择原理或许足以解释我们眼中的宇宙的种种特性。某种意义上,这可能仅仅是一种运气。但我不能确定,凭此是否就能成功地揭开事物的面纱。
也许多元宇宙的不同部分必须遵从它们自己的规律,以特殊的方式互相关联;反过来,也可以想象一下那些宇宙互相关联的种种不同方式。为什么多元宇宙是这样的而不是那样的?要想让聪明的人类习惯事物的任意性似乎不太可能。 我们又走近了那个关于“存在”和“虚无”的古老的哲学谜题,这个谜目前也许没有任何智慧之光可以参透。
举报/反馈