若继续加热0℃的水,随着温度的升高,靠氢键结合在一起的H₂O分子集团进一步瓦解,氢键进一步断裂,结合在一起的H₂O分子团减小,开始出现单个水分子。这时,它们可以任意排列和运动,单个水分子还可以嵌在镂空的分子结构之间。在水温升高的过程中,一方面由于氢键的断裂使水分子排列更紧密,密度增大;另一方面分子热运动加快,使分子间平均距离增大,密度减小。水的密度受这两方面因素的共同影响。
随着水温的不断上升,分子间距增大的较为缓慢;而氢键断裂使分子间距几乎均匀地减小,使得在水温从0℃升高到4℃的过程中,由氢键断裂引起水密度增大的作用,比分子热运动加快引起水密度减小的作用更大,所以在这个过程中水的密度随着温度的升高而增大,表现为反常膨胀。
水温超过4℃时,随着水温的升高,氢键继续断裂,水中多分子集团越来越少;但分子热振动幅度随温度升高不断加大,使分子间的平均距离增大加快,因此由氢键断裂引起的水密度增加的作用较受水分子热振动引起的水密度减小的作用小,因此在水温由4℃继续升高的过程中,水的密度随温度的升高而减小,即呈现热胀冷缩现象。
这样,热振动使分子间距扩大和断裂氢键使集团间距缩小两种相反的竞争机制,使得水在0~4℃之间有着反常膨胀的特性。4℃时,两种相反的机制几乎达到平衡,水分子间距最小,水的密度最大。水的温度上升到4℃以上,热振动占据主导地位,水分子间的距离随着温度的升高而加大,水表现为热胀冷缩,水又回到正常的热膨胀特性。经过上面的讨论可知,水的热膨胀过程从微观上看是由于两种相反机制竞争的结果,主要是氢键的存在,导致了它的反常膨胀,也使水具有了吸热量高、比热容大、4℃的水密度最大这些特性。
冬天,气候寒冷,水的表面直接与冷空气接触,很快就变冷了,温度降到4℃的时候,体积最小,比重最大,就会沉到下面。下面温度比较高的水比重小,就会浮上来。经过不断的交换,使所有水的温度都降到4℃。北风吹来,水的温度继续下降,表面的水冷到4℃以下,水就开始冷胀热缩,比重反而比下面的水小。于是就形成3℃的水浮在4℃的水上面,2℃的水浮在3℃的水上面,1℃的水浮在2℃水上面,0℃的水在最上面。气温降到0℃以下,表面0℃的水就开始结冰。
水结了冰,冰层厚度会逐渐增加,但增加的速度是十分缓慢的。因为冰下面的水都已经降到4℃不会发生对流,而且冰是热的不良导体,下层的水在冰的保护下,仿佛盖了一床棉被,不易受寒而冻结成冰。如果水很深,冰可以结的相当厚,但这需要一定的时间。成语“冰冻三尺,非一日之寒”,就是对水结冰这一缓慢过程现象的高度概括。
水结冰这一过程告诉我们自然界的一些现象往往都有一个酝酿和积累的过程,不会一蹴而就,我们认识事物也要遵循这个规律。
今日知识点
中学物理| 热胀冷缩;分子的运动
文中所用图片均来自:百度图片
长按扫描上方二维码,
加入“知力中小学生科学群”,
青少年科普内容与活动、粉丝福利!
在这里抢先获得!