这一切的关键在于,我们可以很容易地算出这个极限矩形的面积,即让它的长和宽相乘。那么,剩下的问题就是根据圆的尺寸找出矩形的长和宽了。由于比萨块都是竖直排列的,所以矩形的宽就是比萨的半径r。矩形的长等于比萨周长的1/2,这是因为在处理新形状的每个中间阶段,比萨饼皮外缘的1/2变成了矩形的顶边,另外1/2则变成了底边。因此,矩形的长等于比萨周长的1/2,即C/2。综上所述,极限矩形的面积可以用它的长乘以宽得出,即A=r×C/2=rC/2。而且,由于移动比萨块不会改变它们的面积,所以极限矩形的面积也一定是原始比萨的面积!
古希腊数学家阿基米德在《圆的度量》中首次证明了圆的面积为A=rC/2,他的论证过程与上文讲述的方法类似,但更加严谨。
就这个论证过程而言,最具创新性的方面在于无穷发挥作用的方式。当我们只把比萨分成4等份、8等份或16等份时,最好的情况不过是把比萨重新排布成一个有荷叶边的不完美形状。在经历了不太乐观的开端之后,我们切分的比萨块的数量越多,得到的新形状就越接近于矩形。但只有在我们把比萨切分成无穷多块的极限情况下,它才会变成一个真正的矩形。这就是微积分背后的伟大思想,在无穷远处,一切都变得更简单了。
极限与墙之谜
极限就像一个达成不了的目标,你可以离它越来越近,但你永远无法实现它。
比如,在比萨证明中,通过切分出足够多的比萨块并对它们进行重新排布,我们可以使有荷叶边的新形状越来越接近于矩形。但是,我们永远不能把它们变成真正的矩形,而只能接近那种完美状态。幸运的是,在微积分中,极限的不可到达性往往无关紧要。通过想象我们能到达极限,然后看看这种想象意味着什么,我们常常可以解决手头的问题。事实上,微积分领域的许多最伟大的先驱正是运用这种方法,取得了伟大的发现。他们并不是依靠逻辑,而是依靠想象力获得了巨大的成功。
极限是一个微妙的概念,它也是微积分的核心概念。它之所以难以解释,是因为这个概念在日常生活中并不常见。最贴切的类比可能是墙之谜:如果你走过了你和墙之间距离的1/2,再走剩下距离的1/2,接着走剩下距离的1/2……,你最终能到达墙根吗?(图1-9)
答案显然是否定的,因为墙之谜明确规定,你每次只能走你和墙之间距离的1/2,而不是全部。不管你走了10次、100万次还是多少次,你和墙之间总会有间隙。但同样明显的是,你可以任意地接近这堵墙。也就是说,通过足够多次的努力,你可以走到离墙1厘米、1毫米、1纳米(米),或者其他更小但不为零的距离范围内,但你永远无法真正走到墙根处。在这里,墙演的就是极限的角色。人们花费了大约2000年的时间,才给极限下了一个严格的定义。而在此之前,微积分领域的先驱只能依靠直觉。所以,即时你现在对极限的感觉还很模糊,也无须担心。通过分析一些实例,我们可以更好地了解它们。从现代的角度看,极限之所以重要,原因就在于它们是整个微积分领域的基石。
如果墙的比喻显得太过冷酷无情(谁会愿意去接近一堵墙呢?),不妨试试这个类比:任何接近极限的过程都像一位英雄在进行无止境的探索。它和西西弗斯面对的毫无希望的任务(他因触犯众神而受到惩罚,要把一块巨石滚上山顶,再眼睁睁地看着它滚下去,如此反反复复、无休无止)不同,这并非徒劳无功之举。当某个数学过程朝着某个极限逼近(比如,有荷叶边的形状趋近极限矩形)时,就好像故事的主人公正在为一个他明知道不可能实现但仍抱持着成功希望的目标而努力奋斗,这种希望是由他在竭力接近目标的过程中取得的稳步进展激发产生的。
0.333···的故事
为了强化“在无穷远处,一切都变得更简单了”和“极限就像无法实现的目标”之类的伟大思想,我们来看看下面的算术实例。这是一个将分数(比如1/3)转换为等值小数(在本例中,1/3=0.333···)的问题。我清楚地记得,我八年级的数学老师斯坦顿女士教过我们这类问题的计算方法。这件事之所以让我记忆犹新,是因为她突然讲到了无穷。
那一刻,我生平第一次听到一个成年人提及无穷。我的父母当然用不到它,它似乎是一个只有孩子才知道的秘密。在操场上,它总是以嘲弄和拾杠的方式出现。
“你是个混蛋!”
“是啊,好吧,你是两倍的混蛋!”
“你是无穷倍的混蛋!”
“你是无穷加一倍的混蛋!”
“那和无穷倍是一样的,你这个笨蛋!”
这些有启发意义的对话让我确信,无穷的行为和普通数字不一样。当你给它加上1的时候,它不会变大,即使给它加上无穷也是这样。它的这种所向披靡的属性极其适用于终结校园内的争论,谁抢先使用它,谁就赢了。
但在斯坦顿女士提到无穷之前,没有其他老师跟我们谈论过这个问题。我们班的所有同学都已经知道有限小数了,因为它们常被用来表示金额,比如10.28美元的小数点后就有两位数。相比之下,无穷小数的小数点后有无穷位数,尽管它们乍看上去很奇怪,但和分数结合起来讨论就显得很自然了。
我们知道分数1/3也可以写成0.333···,最后的三个点表示无限重复的“3”。这对我来说很重要,因为当我试着用长除法计算1/3时,我发现自己陷入了一个无限循环:1不够被3除,所以假设1是10,那么10除以3等于3余1;现在我回到了起点,又要拿1去除以3。我无法跳出这个循环,这就是在0.333···中“3”不断重复的原因。
关于0.333···末尾的三个点,有两种解释。其中,朴素的解释是,在小数点右边确实肩并肩地排列着无穷多个“3”。当然,正因为有无穷多个“3”,所以我们不能把它们全部写下来,而改用三个点表示它们都在那里,或者至少在我们的脑海中。我把这种解释称为实无穷解释,在我们不愿意过多地思考无穷含义的情况下,它的优点是看上去简单明了、符合常理。
复杂的解释是,0.333···代表极限,就像在比萨证明中极限矩形是有荷叶边形状的极限,或者墙是倒霉步行者的极限一样。只不过,这里的0.333···代表对分数1/3进行除法运算后得到的连续小数的极限。随着除法运算的不断进行,在1/3的小数展开式中会产生越来越多的“3”。通过努力计算,我们可以得到一个尽可能接近1/3的近似值。如果对1/3≈0.3的结果不满意,那么我们可以再算一步得到1/3≈0.33,以此类推。我把这种解释称为潜无穷解释,其中的“潜”意味着近似值的小数位数可以根据需要不断增多。没有什么能阻止我们进行100万次、10亿次或者更多次数的除法运算。这种解释的优点是,我们永远不必引入像无穷这样令人摸不着头脑的概念,而可以继续利用有限的概念。
在处理像1/3=0.333···这样的等式时,我们采取哪种观点其实并不重要。它们同样站得住脚,而且在我们想进行的任何计算中都能得出相同的数学结果。但在数学领域,还存在实无穷解释可能会导致逻辑混乱的其他情况,这就是我在引言中提及无穷像怪物一样恐怖时所要表达的意思。对于某个过程产生的不断接近极限的结果,无穷有时候确实会让我们形成不同的看法。但假装这个过程已经结束,并且以某种方式到达了无穷境界,我们偶尔也会因此陷入麻烦。
无穷多边形的故事
举一个烧脑的例子。假设我们在一个圆上画一定数量的点,并使其均匀分布,然后用直线将它们相互连接起来。如果画3个点,那么我们会得到一个等边三角形;如果画4个点,那么我们会得到一个正方形;如果画5个点,那么我们会得到一个五边形;以此类推,我们可以画出一连串的直线形状,它们被称为正多边形(图1-10)。
请注意,我们画的点越多,得到的多边形就会越接近于圆形。与此同时,它们的边越来越短,数量越来越多。当我们按照边数从少到多的次序逐步推进时,多边形就会越来越接近于作为极限的原始圆。
于是,无穷再次成为连接两个世界的桥梁。这一次,它把我们从直线的世界带到了圆的世界,将棱角分明的多边形变成了如丝般光滑的圆形。而在比萨证明中,无穷则把我们从圆的世界带到了直线的世界,因为它把圆变成了矩形。
当然,在任何有限的阶段,多边形仍然只是多边形,它们还不是圆,也永远不会变成圆。尽管它们越来越接近于圆,但它们绝不会成为真正的圆。我们在这里谈论的是潜无穷,而不是实无穷。所以,从逻辑严密性的角度看,一切都无懈可击。
但如果多边形的边数不断逼近实无穷,会怎么样?最终得到的边长无限短的无穷多边形真的是一个圆吗?这种想法颇具吸引力,因为到那时多边形会变得光滑,它的所有角都被磨平了,看上去一切皆完美。
更多精彩阅读推荐阅读由中信出版社最新出版的《微积分的力量》。
《微积分的力量》
作者:[美]斯蒂夫·斯托加茨
译者:任烨
出版社:中信出版社
出版时间:2021.1
点击封面立即预订
(2月下旬发货)
《黑天鹅》作者纳西姆·尼古拉斯·塔勒布对这本书的评价是:“高能预警:这是一本危险的书。它会让你爱上数学,甚至有可能把你变成一位数学家。”
内容简介:
微积分是人类历史上的伟大思想成就之一,也是数学领域不可或缺的一个重要分支。除此之外,我们更应该关注的事实是:如果没有微积分,人类就不可能发明电视、微波炉、移动电话、GPS、激光视力矫正手术、孕妇超声检查,也不可能发现冥王星、破解人类基因组、治疗艾滋病,以及弄明白如何把5 000首歌曲装进口袋里。
在人类文明进程中的这些具有里程碑意义的发明和发现背后,微积分究竟扮演了什么样的角色?围绕曲线之谜、运动之谜和变化之谜,毕达哥拉斯、阿基米德、伽利略、开普勒、牛顿、莱布尼茨、爱因斯坦、薛定谔等如何用微积分的“钥匙”打开了宇宙奥秘之“锁”?这些谜题的解决方案对人类文明的进程和我们的日常生活又产生了什么样的深远影响?
在《微积分的力量》书中,应用数学家兼“导游”斯托加茨将用一种“讲故事”和“看展览”的方式为你一一揭晓答案。“我们不必为了理解微积分的重要性而学习如何做运算,就像我们不必为了享用美食而学习如何做佳肴一样。我将借助图片、隐喻和趣闻逸事等,尝试解释你们需要了解的关于微积分的知识。我也会给你们介绍有史以来颇为精致的一些方程和证明,就像我们在参观画展的时候不会错过其中的代表作一样。”
在高中和大学时期,尽管我们中的许多人都对这门课程退避三舍,但斯托加茨用一种新颖独特和接地气儿的方式给我们讲述了微积分的历史。相信在读完《微积分的力量》后,我们都会对微积分有更加立体生动的认知,就像欣赏名画、名曲那样发现微积分之美。
作者简介:
美国康奈尔大学应用数学系教授、知名教师和数学家。他为《纽约时报》《纽约客》写作数学博客,也是美国科普电台、《科学星期五》的常驻嘉宾。他的主要代表作有《x的奇幻之旅》。他目前住在纽约伊萨卡。
目录(上下滑动查看)
引言 // 001
写给每个人的微积分读物 // 002
由微积分主宰的世界 // 004
微积分不只是一种语言 // 006
不合理的有效性 // 007
无穷原则 // 008
石巨人与无穷 // 010
曲线、运动和变化 // 011
第1章 无穷的故事 // 019
作为桥梁的无穷 // 023
比萨证明 // 024
极限与墙之谜 // 028
0.333…的故事 // 030
无穷多边形的故事 // 032
无穷的魅力和危险 // 033
除数为 0 的禁忌 // 034
实无穷之罪 // 036
芝诺悖论 // 037
芝诺悖论走向数字化 // 040
当芝诺悖论遇上量子力学 // 042
第2章 驾驭无穷的勇士 // 047
夹逼法与圆周率 // 051
圆周率之道 // 055
立体主义与微积分 // 057
奶酪论证 // 062
阿基米德方法 // 065
从计算机动画到面部手术 // 074
探索运动之谜 // 079
第3章 运动定律的探索之旅 // 081
亚里士多德的世界观 // 084
伽利略出场 // 088
下落、滚动与奇数定律 // 090
科学极简主义的艺术 // 093
从摆动的吊灯到GPS // 095
开普勒与行星运动之谜 // 102
开普勒第一定律:椭圆轨道 // 105
开普勒第二定律:相等的时间,相等的面积 // 107
开普勒第三定律:行星的公转周期 // 109
开普勒与伽利略的异同点 // 110
阴云密布 // 112
第4章 微分学的黎明 // 115
代数在东方的崛起 // 118
代数的兴起与几何学的衰落 // 119
代数与几何学的邂逅 // 121
方程与曲线 // 124
在一起,会更好 // 126
费马vs笛卡儿 // 126
寻找失传已久的发现方法——分析 // 129
行李箱的优化问题 // 131
费马如何帮助了美国联邦调查局?// 135
最短时间原理 // 142
关于切线的争论 // 146
近在眼前的应许之地 // 149
第5章 微积分的十字路口 // 151
函数的作用 // 155
幂函数 // 156
指数函数 // 157
10 的次方 // 158
对数 // 161
自然对数及其指数函数 // 164
指数增长与指数式衰减的机制 // 167
第6章 变化率和导数 // 171
微积分的三大核心问题 // 175
线性函数及其恒定的变化率 // 178
非线性函数及其不断变化的变化率 // 182
作为昼长变化率的导数 // 186
作为瞬时速度的导数 // 191
第7章 隐秘的源泉 // 199
面积、积分和基本定理 // 202
运动使基本定理更直观 // 203
恒定的加速度 // 206
用油漆滚筒证明基本定理 // 210
基本定理的意义 // 213
积分学的圣杯 // 214
局部vs整体 // 219
一个孤寂的男孩 // 221
玩转幂级数 // 223
混搭大师 // 228
私密的微积分 // 229
第8章 思维的虚构产物 // 233
眨眼之间 // 237
无穷小量 // 238
2.001 的立方 // 240
微分 // 242
微分求导法 // 243
通过微分推导出基本定理 // 245
莱布尼茨是如何发现微分和基本定理的?// 248
在微积分的帮助下对抗HIV // 255
第9章 宇宙的逻辑 // 263
自然的逻辑 // 267
二体问题 // 272
牛顿力学与《隐藏人物》 // 275
牛顿微积分与《独立宣言》 // 276
连续体与离散集 // 278
常微分方程与偏微分方程 // 279
偏微分方程与波音 787 客机 // 282
无处不在的偏微分方程 // 285
第10 章 波、微波炉和脑成像 // 287
弦理论 // 292
为什么是正弦波?// 296
振动模态的可视化:克拉德尼图形 // 299
最值得尊崇的勇气 // 301
微波炉 // 302
为什么微波炉最初被称作雷达灶?// 303
CT与脑成像 // 304
第11 章 微积分的未来 // 311
DNA的缠绕数 // 315
决定论及其局限性 // 318
非线性 // 320
混沌 // 322
庞加莱图 // 324
走上战场的非线性 // 326
微积分与计算机联盟 // 327
复杂系统与高维诅咒 // 328
计算机、人工智能和洞察力之谜 // 332
结语 // 337
小数点后 8 位 // 337
发现正电子 // 339
可以理解的宇宙 // 341
致谢 // 345
注释 // 349