数学自然数有多少个,数学课上的自然数是哪些

首页 > 教育 > 作者:YD1662024-11-13 18:09:09

数学自然数有多少个,数学课上的自然数是哪些(1)

点击上方“数学英才”可以订阅哦!

数论

人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。

对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。

数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。

数论的基本内容

自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。

自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。

在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。

到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。

在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。

数学自然数有多少个,数学课上的自然数是哪些(2)

数论的基本内容

数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。

初等数论是数论中不求助于其他数学学科的帮助,只依靠初等的方法来研究整数性质的分支。比如中国古代有名的“中国剩余定理”,就是初等数论中很重要的内容。

解析数论是使用数学分析作为工具来解决数论问题的分支。数学分析是以函数作为研究对象的、在极限概念的基础上建立起来的数学学科。用数学分析来解决数论问题是由欧拉奠基的,俄国数学家车比雪夫等也对它的发展做出过贡献。解析数论是解决数论中艰深问题的强有力的工具。比如,对于“质数有无限多个”这个命题,欧拉给出了解析方法的证明,其中利用了数学分析中有关无穷级数的若干知识。二十世纪三十年代,苏联数学家维诺格拉多夫创造性的提出了“三角和方法”,这个方法对于解决某些数论难题有着重要的作用。我国数学家陈景润在解决“哥德巴赫猜想”问题中也使用的是解析数论的方法。

代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。

几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。几何数论研究的基本对象是“空间格网”。什么是空间格网呢?在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。

数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。

由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。

数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。下面简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、圆内整点问题、完全数问题……

在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。

特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。

拓扑学

拓扑学的由来

几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。

在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。

在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f v-e=2。

根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。

著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。

数学自然数有多少个,数学课上的自然数是哪些(3)

什么是拓扑学?

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。

拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。

举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。

拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。

在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。

应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。

直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。[推荐]数学各个研究方向简介

我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。

拓扑变换的不变性、不变量还有很多,这里不在介绍。

拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。

二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。

因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。

拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。

数学自然数有多少个,数学课上的自然数是哪些(4)

首页 123下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.