02
分数比较大小
同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:
分母相同的两个分数,分子大的那个分数比较大;
分子相同的两个分数,分母大的那个分数比较小;
分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
大小比较方法
1. “通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
2. 化为小数。
3. 先约分,后比较。
4. 根据倒数比较大小。
5. 若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。也就是说,
注:可以用加糖来理解这个公式
6. 借助第三个数进行比较。有以下几种情况:
(1)对于分数m和n,若m>k,k>n,则m>n。
(2)对于分数m和n,若m-k>n-k,则m>n。
前一个差比较小,所以m<n。
(3)对于分数m和n,若k-m<k-n,则m>n。