新能源整车控制器关键技术
上图为新能源整车控制器关键技术,主要是扭矩分配、换挡调节、能量回收等。
HCU和其他控制器之间主要通过CAN通信进行信息交互。会有少数信息通过硬线、LIN线、Flexray等方式传递。
主要架构类似于下图中分布式结构。整车系统根据功能分若干CAN子网络,不同CAN子网络之间通过网关连接。网关负责不同子网络之间的信号路由。
动力系统(VCU所在子网络)一般通信速率500kb/s就够了。下一代的通信架构是向少控制器的方向发展,即所谓的域控制器。当然还有别的一些技术路线,有兴趣可以去查查。下图是网络架构的发展方向。
整车网络架构发展趋势
从图中可以看出以后的总体发展方向是向少控制器,高速化方向发展。这主要是因为,随着汽车电气化、智能化的发展,通信信息量大大增加,对通信的实时性要求更高,所以需要更高的通信速率。对通信实时性要求高的同时,对控制器CPU的计算能力提出更高要求,所少控制器方案便于集成计算能力更强的CPU,降低成本。
整车控制器分硬件结构(PCB板)如下图,来自百度
PCB板主要包含控制器的驱动芯片、控制器的中央处理器、控制器的输入/输出/通信管脚组成。
业内普遍采用的控制器架构是AUTOSAR架构。AUTOSAR architecture的分层式设计,用于支持完整的软件和硬件模块的独立性(Independence),中间RTE(Runtime Environment)作为虚拟功能总线VFB(Virtual Functional Bus)的实现,隔离了上层的应用软件层(Application Layer)与下层的基础软件(Basic Software),摆脱了以往ECU软件开发与验证时对硬件系统的依赖。
软硬件分离的分层设计,对于OEM及供应商来说,提高了系统的整合能力,尤其标准化交互接口以及软件组件模型的定义提高了各层的软件复用能力,从而降低了开发成本,使得系统集成与产品推出的速度极大提升。
AUTOSAR分层结构及应用软件层功能