斯柯达明锐
故障现象在发动机工作过程的压缩和做功行程,汽缸内的高压气体会由活塞与汽缸壁的缝隙漏入曲轴箱,俗称曲轴箱窜气。窜入曲轴箱的气体会对润滑油的品质造成一定影响,同时也会导致曲轴箱压力升高而使相关油封等提早损坏。因此,在现代发动机中均设置有曲轴箱通风系统,此系统可及时将曲轴箱窜气引出并导入进气管路。这样既可减少曲轴箱窜气对润滑系统的影响,也可使窜气中的可燃烧成分再次进入汽缸燃烧,减少能源浪费。
曲轴箱通风系统的设置需要增加通风及控制管路,而因接口连接不紧、管路老化折损、相关阀门卡滞等原因造成的管路泄漏是曲轴箱通风系统常见的故障。因曲轴箱窜气成份特点和曲轴箱通风系统管路特点,曲轴箱通风系统管路泄漏后的故障现象有着自身的特点。正确把握曲轴箱通风系统管路泄漏引发的故障特点,合理检测、调取、分析相关数据参数,就能使我们快速准确地诊断相关故障并加以排除。
下面以一例斯柯达明锐汽车曲轴箱通风调节阀漏气而引发故障的具体案例来分析发动机曲轴箱通风系统的结构特点、工作机理、故障形态特点及对应的故障诊断分析思路和方法。
一辆上海大众生产的斯柯达明锐轿 车,配备了1. 8 T S I发动机,行驶里程约 95,000km,车主反映该车在正常行驶过程 中发动机的故障灯突然点亮,随后出现早上 冷车启动时发动机有轻微抖动的现象。
故障诊断与排除因该车发动机故障灯已经点亮,说明 发动机控制单元的自诊断系统已经检测到 并储存相关故障信息,所以接车后首先用VAS5052B电脑诊断仪对发动机进行检查。通过VAS5052B电脑诊断仪发现发动机控制单元中存储一个可以清除的故障码00368/P0171,含义为汽缸列1系统过稀/偶然。读取相关数据,氧传感器、过量空气系统λ调节值等参数数值都与读取的故障码相一致,说明00368/P0171这个故障码真实可信。
00368/P0171这个故障码经常见到,发动机控制单元生成并储存该故障码的原因是氧传感器输入发动机控制单元的信号电压过低或伴随较高的正燃油修正值,发动机控制单元据此判断系统混合汽偏稀。导致这个故障码的原因有:氧传感器故障、线路故障、燃油压力过低、喷油器堵塞、空气流量计故障、进气管路漏气、排气管路漏气等。
该车已行驶95,000km,本着“故障检查与常规检查并举,修理作业和维护作业兼顾”的原则,先对故障易发的燃油供给系统和线路、管路做常规性的检查和保养。
首先目视检查低压燃油管路、高压油泵及高压燃油管路,没有发现漏油现象。目视检查发动机控制系统线束导线,没有破损现象。检查线束相关各插接器,连接正常无松动现象。目视检查进气相关各管路没有发现明显的脱落、松动现象。
然后将燃油压力表VAG318接到发动机右前舱低压燃油管中,检测低压油泵燃油压力。启动发动机,读取燃油压力表VAG318上的燃油压力为5.5bar(1bar=105Pa),与标准值(4.0~5.5bar)相比,正常。拆下喷油器进行超声波清洗后进行燃油喷射试验,喷油量和油束也没有发现异常情况。
至此,常规检查和保养作业告一段落,没有发现和故障相关的异常情况,为给下一步的诊断检查作业指向明确,利用VAS5052B电脑诊断仪再次调取故障发生时发动机控制单元的相关数据(图1),深入进行分析。
图1 故障发生时发动机控制单元的相关数据
调取的数据显示汽缸列1的氧传感器 电压为0.18V(正常值为0.10~0.85V), 该电压值明显偏低;汽缸列1的λ调节值为 11.7%(正常值为-10%~10%),该调节值 已经超出正向极限。这两个数据都支持混 合汽过稀,与调取的故障码00368/P0171 完全吻合。但这两个数据也只能说明故障 码的真实性,而无法提供故障部位及原因 的指向。
进一步分析其他相关数据,发现了一 些问题。发动机数据块显示该车故障发 生时怠速转速为76 0 r/mi n,符合规定值 (660~860r/min);平均喷油时间1.02ms, 也与规定值(0.50~1.00ms)相吻合,甚至还 略高一些。但对应的节气门角度(电位计)只 有1.2%,低于正常值(规定值为0~3.0%, 正常一般在2.0%);进气量1.7g/s,也低于正 常值(1.9~2.1g/s);相对负荷12.8%,同样 低于正常值(规定值为15.0%~25.0%,正常 车辆一般为18.0%)。这些数据之间存在一 定矛盾,但也正是这些矛盾基本指明了该车 故障的方向。
数据块中较低的三个参数(节气门开 度、进气量和相对负荷)是相互印证的,在 发动机转速一定的情况下,较小的节气门开 度对应的进气量偏低,较小的节气门开度和 偏低的进气量对应的相对负荷较小。但在正 常情况下,偏小的节气门开度和偏低的进气 量是不支持正常的平均喷油时间(平均喷油时间对应每循环喷油量)和怠速转速的。相关数据之间的矛盾只能说明一个问题,那就是进气及其相关管路存在漏气点。
因为进气及其相关管路有漏气点,使一些空气未经节气门的控制和空气流量计的计量便进入汽缸。这些漏入汽缸的空气使发动机维持正常怠速需要从正常进气管道(空气滤清器、空气流量计、节气门体)获得空气的需求减少,因而才会出现正常的怠速值,却对应较低的节气门开度和进气量。而发动机控制单元根据较低的进气量计算出来的基本喷油脉宽自然也是偏低的,较低的喷油脉宽对应较低的喷油量,较低的喷油量和正常的进气量(包含漏入部分)就形成了较低的混合汽浓度。氧传感器因此向发动机控制单元反馈混合汽过稀的信号电压,发动机控制单元据此对喷油脉宽进行修正,就出现了高达11.7%的汽缸列1的λ调节值。因为发动机控制单元已经根据氧传感器的反馈信号对喷油脉宽进行了修正,所以也就出现了和正常车辆一样的1.02ms的正常平均喷油时间。因为发动机控制单元依据氧传感器反馈信号对喷油脉宽的修正对应汽缸列1的λ调节值已经到达了极限,所以经过一个检测周期后,发动机控制单元的自诊断系统就生成并储存了故障码00368/P0171。
至此,该车故障基本确定是因为进气及其相关漏气造成的。下面检查的重点就是找出漏气的具体部位并加以排除。再次对进气及其相关管路进行目视和触摸检查,还是没有发现有脱落、松动及破损的地方,看来漏气的部位比较隐蔽,只好在发动机怠速运转时用化油器清洗剂沿着进气及其相关管路进行喷射干扰试验,试验包括相关的系统和部件。当喷到曲轴箱通风系统油气分离器上的调节阀时,读取的相关数据发生了明显的变化(图2):λ调节值和氧传感器电压基本恢复正常,说明漏气应该就在此处。
图2 干扰试验至曲轴箱通风系统调节阀处时 的数据流
于是拆下曲轴箱通风系统油气分离器上的调节阀进一步拆检,发现调节阀内的膜片已发生严重变形(图3),造成曲轴箱通风系统油气分离器上的调节阀漏气,使一定量的外部空气未经空气流量计计量便进入进气歧管,从而使该车发动机发生相应故障。该车故障的具体原因终于找到,于是更换新的曲轴箱通风系统油气分离器,启动发动机,用VAS5052B故障诊断仪重新读取相关发动机数据流,相关数据恢复正常(图4)。节气门角度2.2%,进气量2.5g/s,相对负荷16.5%,都与正常车辆一致。交车一段时间后回访,车主告知车辆已行驶近1000km,没有出现原有故障现象,确认故障已经排除。