图4 OPC服务器
在本实验中,Demo3D软件也作为最终的验证软件,负责对KUKA KR6机械臂模型和七巧板组件模型的运动仿真。图像处理和下单软件为本团队亲自开发,在这其中设置了一个可拖动的图形用户界面(GUI),其中包含了所有的七巧板模型。并且可以使用鼠标拖动每一块七巧板并调整其位置和角度,如图5所示。切线模型在左上角GUI界面中的位置是最终实切线在左板上的实际位置。
图5 下单软件
2.实验目的本实验旨在通过数字孪生软件和机械臂实现图像识别技术在数字孪生体中的应用。最后,通过将分散的拼图碎片组合成给定的形状,验证了实验结果。实验过程如下,如图6所示:
图6 实验流程图
构建模型:使用SolidWorks(2020)对所有实验相关组件进行比例建模。这里有一个固体作品的试用版。
https://www.solidworks.com/https://my.solidworks.com/try-solidworks?&lang=tw
建立空间坐标系:通过控制KUKA KR6机械臂,根据建立规则建立空间坐标系。https://www.cognex.com/products/machine-vision/vision-software/visionpro-software
图像识别:通过图像处理软件VisionPro和图像处理算法,对七巧板照片进行图像处理。
坐标系变换:通过分别在像素坐标系和空间坐标系中取点,建立像素与空间坐标系之间的变换关系。
虚拟实际相互控制:通过对不同软件使用的坐标系进行转换,实现了虚拟-实相互控制,减少了通信所需的时间。
在本实验中,PC和PLC分别作为主控制装置和上位机系统,如图7所示。PC作为用户的唯一界面,负责真实系统与虚拟模型之间的宏控制。PC还负责监控真实的系统,并实时显示模拟结果,同时读取用户的输入,并下载相应的程序到PLC。PLC作为本实验的控制装置,负责真实系统与虚拟模型之间的微控制,并通过OPC协议建立真实系统与虚拟模型之间的连接。
图7 控制结构示意图
3.实验过程3.1 模型的建立和导入
通过Solidworks软件构建七巧板工作台、七巧板模型、KUKA KR6机械臂和模型的其他组件,并转换为IGS格式。然后将其导入到Demo3D中,并在Demo3D中选择适当的模型大小,如图8所示。