• i2i:根据商品积累的用户点击行为,计算item-item的用户共现点击得分,作为i2i的相似度。
• x2i:这里的x可以是商品的tag、class、brand、query、pool_ids等,根据用户全域的行为构建用户偏好,对商品标题信息进行分词,以及用户的tag,class,品牌,搜索场景下对应query等,最终构建倒排索引进行检索。
• 深度召回:主要通过深度网络模型,来预测用户与商品的相似性。模型分别计算出用户侧向量与商品侧向量,在线检索时,根据用户侧向量,通过向量引擎完成ANN检索出topK个商品。
算分引擎
算分引擎的作用,是将输入的待打分候选商品集,关联上商品特征,并结合用户的特征,通过深度网络模型的计算执行,完成候选商品集中每一个商品对该用户的个性化预测得分。这里我们提供了一个包含ctr、cvr与互动的多目标算分模型,满足了大多数场景的个性化需求。 此外,我们将算分排序模型的输入输出进行标准化,也提供了模型定制化的能力。有些场景不太适应通用的多目标模型,可遵循协议将模型接入,每一个模型具备一个唯一的标识biz_name,场景配置上选择该biz_name即可。