在开始今天课程之前,先回忆下上一讲在结束时,我提出的windows平台下的几个关键问题:
1:缓冲区距离返回地址间的距离确定,或者说缓冲区大小的确定。一般我们通过调试可以直接看出缓冲区的大小。但是实际漏洞利用中,有时缓冲区的大小甚至是动态 的,这台机器上返回地址是200个字节的偏移,下个机器就可能变成208字节了。
2:定位shellcode的位置。栈帧中的缓冲区地址经常是不定的,尤其是在windows平台下。要想在淹没返回地址后准确的返回到shellcode上,像第5讲那样直接在调试中查出来写死在password.txt文件中肯定不行
3:定位需要的API。在shellcode中一般要完绑定端口建立socket侦听等功能,需要调用一系列windowsAPI。这些API的入口地址根据操作系统的版本,补丁版本会有很大差异。像第5讲中那样直接把API地址查出来是没办法写出稳定的,通用的shellcode的
4:shellcode对特定字节的敏感。在跟贴中已经有同学发现这个问题了,strcpy,fscan对于一些特定的字节有特殊的处理,如串截断符0x00等。当限制较少时,编写shellcode还可以通过选用特殊指令来避免这些值,但有时会限制比较苛刻,这将对shellcode的开发带来很大困难——用汇编写程序本来就够难了,还要考虑指令对应的机器码的值
5:shellcode的大小也很重要。即便是高手,完成一个比较通用的用于绑定端口的shellcode也要300~400字节。当缓冲区非常狭小时,有什么办法能够优化shellcode让它变得更精悍些呢?
这些内容就是接下来几讲我们将要关注的东西。今天我们主要来看第2个问题,怎样做到比较通用和稳定的确定缓冲区(shellcode)的位置。
回忆上一讲中的代码植入实验,当我们可以用越界的字符完全控制返回地址后,需要将返回地址改写成shellcode在内存中的起始地址。在实际的漏洞利用过程中,由于动态链接库的装入和卸载等原因,windows进程的函数栈帧很有可能会产生“移位”,即shellcode在内存中的地址是会动态变化的,因此像第5讲中那样将返回地址简单地覆盖成一个定值的作法往往不能让exploit奏效。
图1
因此,要想使exploit不致于10次中只有2次能成功地运行shellcode,我们必须想出一种方法能够在程序运行时动态定位栈中的shellcode。
回顾上一讲中实验在verify_password函数返回后栈中的情况:
图2
绿色的线条体现了代码植入的流程:将返回地址淹没为我们手工查出的shellcode起始地址0x0012FAF0,函数返回时这个地址被弹入EIP寄存器,处理器按照EIP寄存器中的地址取指令,最后栈中的数据被处理器当成指令得以执行。
红色的线条则点出了这样一个细节:在函数返回的时候,ESP恰好指向栈帧中返回地址的后一个位置!
一般情况下,ESP寄存器中的地址总是指向系统栈中且不会被溢出的数据破坏。函数返回时,ESP所指的位置恰好是我们所淹没的返回地址的下一个位置。
注意:函数返回时ESP所指位置与函数调用约定、返回指令等有关。如retn 3与retn 4在返回后,ESP所指的位置都会有所差异。
图3
由于ESP寄存器在函数返回后不被溢出数据干扰,且始终指向返回地址之后的位置,我们可以使用上图所示的这种定位shellcode的方法来进行动态定位:
用内存中任意一个jmp esp指令的地址覆盖函数返回地址,而不是原来用手工查出的shellcode起始地址直接覆盖
函数返回后被重定向去执行内存中的这条jmp esp指令,而不是直接开始执行shellcode
由于esp在函数返回时仍指向栈区(函数返回地址之后),jmp esp指令被执行后,处理器会到栈区函数返回地址之后的地方取指令执行。
重新布置shellcode。在淹没函数返回地址后,继续淹没一片栈空间。将缓冲区前边一段地方用任意数据填充,把shellcode恰好摆放在函数返回地址之后。这样jmp esp指令执行过后会恰好跳进shellcode。
这种定位shellcode的方法使用进程空间里一条jmp esp指令做“跳板”,不论栈帧怎么“移位”,都能够精确的跳回栈区,从而适应程序运行中shellcode内存地址的动态变化。
下面就请和我一起把第5讲中的password.txt文件改造成上述思路的exploit,并加入安全退出的代码避免点击消息框后程序的崩溃。
我们必须首先获得进程空间内一条jmp esp指令的地址作为“跳板”。
上一讲中的有漏洞的密码验证程序已经加载了user32.dll,所以我们准备使用user32.dll中的jmp esp指令做为跳板。这里给出两种方法获得跳转指令。第一种当然是编程了,自己动手,丰衣足食。事实上所有的问题都能够通过自己编程来解决的。这是我的程序
#include <windows.h>
#include <stdio.h>
#define DLL_NAME "user32.dll"
main()
{
BYTE* ptr;
int position,address;
HINSTANCE handle;
BOOL done_flag = FALSE;
handle=LoadLibrary(DLL_NAME);
if(!handle)
{
printf(" load dll erro !");
exit(0);
}
ptr = (BYTE*)handle;
for(position = 0; !done_flag; position )
{
try
{
if(ptr[position] == 0xFF && ptr[position 1] == 0xE4)
{
//0xFFE4 is the opcode of jmp esp
int address = (int)ptr position;
printf("OPCODE found at 0x%x\n",address);
}
}
catch(...)
{
int address = (int)ptr position;
printf("END OF 0x%x\n", address);
done_flag = true;
}
}
}
jmp esp对应的机器码是0xFFE4,上述程序的作用就是从user32.dll在内存中的基地址开始向后搜索0xFFE4,如果找到就返回其内存地址(指针值)。
如果您想使用别的动态链接库中的地址如“kernel32.dll”,“mfc42.dll”等;或者使用其他类型的跳转地址如call esp,jmp ebp等的话,也可以通过对上述程序稍加修改而轻易获得。
除此以外,还可以通过OllyDbg的插件轻易的获得整个进程空间中的各类跳转地址。
这里给出这个插件,点击下载插件OllyUni.dll:OllyUni.rar.
把它放在OllyDbg目录下的Plugins文件夹内,重新启动OllyDbg进行调试,在代码框内单击右键,就可以使用这个插件了,如图: