图4 雾霾暴发前后PM2.5数浓度和质量浓度的变化趋势
(图4为北京2013年9月一场雾霾的形成情况,在以PM2.5质量浓度为代表的雾霾发生之前,PM2.5的数浓度非常高,而在雾霾发生时,由于超细颗粒物凝并、二次复合等,PM2.5数浓度大幅度下降,质量浓度大幅度上升。在雾霾大暴发之前极高的PM2.5数浓度,其来源是雾霾大暴发主因的重要线索。图中显示出了PM1的组分分析结果。资料来源:Anetal.(2019).PNAS.)
6、常规污染物治理的技术和管理缺陷,引发非常规致霾污染物排放暴增,表现为大气中PM2.5数浓度暴升,导致2013年开始雾霾大暴发,并持续至今
采用有缺陷的燃煤烟气治理设施和管理措施治理常规污染物,引发大气中未被监测和控制的非常规致霾污染物排放暴增,表现为大气中PM2.5数浓度暴升,导致2013年雾霾大暴发,并持续至今。显然,雾霾是治理常规污染物过程中,因为技术和管理缺陷造成的次生人为灾害,是人为失误造成的人为灾害,不可能是气象灾害。
图5 雾霾天数与湿法脱硫的煤炭消费量高度相关
这些非常规污染物包括可凝结颗粒物(CPM),脱硝过量喷氨导致的多种形式氨/铵排放,溶解固形物被机械携带、取消或没有GGH后湿烟羽中形成的超细颗粒物等。
7、并非PM2.5质量浓度变化或突变,导致雾霾大暴发
PM2.5质量浓度从2007年开始,呈持续下降趋势,雾霾大暴发前的2010年到开始大暴发的2013年,基本处于平台期。其年度平均浓度没有出现多大变化,这也是一些人否认2013年真的有雾霾大暴发的依据。实际上,进一步统计北京每年的每小时PM2.5大于300的小时数,2013年是2012年的2倍,也表现出突变。可见2013年开始雾霾大暴发,不是人们观念的改变或错觉。
图6雾霾天数和PM2.5质量浓度的变化在2012年之前相似,2013年之后因为围绕PM2.5质量浓度的大气污染治理彻底脱钩
四、2015年以后开展的超低排放改造是常规污染物的深度减排,仍有足够多的致霾非常规污染物排入大气,并造成雾霾,只是程度有所减轻
1、超低排放是过去有酸雨时治理酸雨主要措施的加强版,并非针对雾霾治理
超低排放改造仍然是针对导致酸雨的常规污染物更低排放标准的深度减排,对非常规污染物减排作用不大。因此,超低排放改造之后,仍有足够多的可凝结颗粒物不被控制的排放到大气中,成为大气中一次超细颗粒物的主体,也是特定气象条件下二次颗粒物形成的温床和加速器。超低排放改造的综合效果,表现为霾、雾、轻雾天数仍在突变后的高位徘徊。
有人以还有好多燃煤设施没有进行超低排放改造,可能继续导致雾霾,为超低排放改造开脱责任,是站不住脚的。超低排放改造减少了大量污染物的排放,这也能够反证2013-2014年为什么雾霾大爆发。但是超低排放改造与改造之前的湿法脱硫脱硝相比,在非常规污染物排放方面,没有多少实质性的改善,也不是治理的目标,属于五十步笑百步。
2、考虑可凝结颗粒物后,严格的北京超低排放标准下,颗粒物浓度也超过5毫克的北京标准
在超低排放完全实现,标准也非常严格的北京,燃煤设施可过滤颗粒物(FPM)排放极低。但加上可凝结颗粒物后,也超过北京的颗粒物排放质量标准。而中国环科院任院士提供的北京之外若干设施的检测数据显示,仅仅可凝结颗粒物平均浓度就达每立方米13.9毫克,远远高于北京市。即使达到超低排放的一些燃煤发电机组,PM2.5或PM1.0质量浓度很低,但其数浓度并不比PM2.5质量浓度很高的锅炉低多少。
3、权威专家评价:超低排放评价显著低估了颗粒物的实际排放水平
即使检测出上述北京超低排放水平很高的权威专家,在公开发表的文章中也评价到:我国现行污染物排放标准,颗粒物指标专指FPM,没有考虑粒径极小、数量极大及特定气象条件下雾霾暴发成因的CPM。可见,超低排放评价显著低估了颗粒物的实际排放水平。
这一判断与我们这几年的研究一致。
4、目前重点区域基本完成超低排放改造,能见度低的霾、雾和轻雾天数是按照PM2.5质量浓度相对雾霾大爆发之前下降50%推算天数的十几倍,而不是一半;显然,相对雾霾治理,超低排放并非对症下药
按照PM2.5质量浓度已经下降到雾霾大暴发前的50%,霾、雾和轻雾天数应该是雾霾大暴发前的一半,山东省平均应该在15天左右,但实际天数至今仍是这个数值的十几倍,令人难以置信。导致能见度低的超细颗粒物,粒径极小,但对健康的影响一点也不小,甚至更要命,需要根治。
五、煤炭消费总量、散煤燃烧量、机动车排放等常规变量,在2013年前后都没有突变,不可能导致雾霾大暴发
1、煤炭消费量在雾霾大暴发前后没有大的变化
2001-2006年PM2.5质量浓度随着煤炭消费量上升而同步上升,2007年开始二者已经脱钩。
一般而言,对煤炭消费量的控制,有利于降低PM2.5的质量浓度。但2007年开始的脱硫除尘,使得二者基本不再相关,煤炭消费量已经不是导致PM2.5浓度升高或发生雾霾的关键变量。如沈阳等一些城市煤炭消费量早就从2000年开始大幅度下降,但在2013年仍然暴发极度严重的雾霾,也能够略见一斑。
如果没有外部因素发生突变,雾霾天数会沿着图7中红色箭头方向变化,略微增长。如果进一步考虑2012年后单设的轻雾天数,雾霾天数的突变比图7中蓝线还会高一倍多。这是找到雾霾大暴发的钥匙,但由于当时数据难以拿到,错失搞清楚主因的机会。
图7 雾霾天数与煤炭消费量变化趋势
(图7为山东省煤炭消费(黑线)和雾霾天数(蓝线)变化,2013年前后煤炭消费量没有多大变化,但雾霾天数则发生突变。因此,雾霾大暴发不可能是由于煤炭消费量突变引起的。)
2、其他常规变量都没有发生大的变化,即使其对当地PM2.5质量浓度贡献一直很大
散煤燃烧,可能雾霾大暴发之前烧的更多。减少农村散煤采暖、减少产业散煤燃烧等措施,有利于PM2.5质量浓度的下降,但也不是雾霾大暴发的原因。
机动车,就华北平原而言,一直在按照常规增长,其排放不可能引起突变。
建筑工地可能是PM10的主要来源,而不是PM2.5的主要来源。
燃煤发电机组或锅炉数量及其燃烧技术,在2013年前后也没有多大变化,不可能引起突变。
其他变量,如钢铁产量、电解铝产量、建材产量等以及经济产出变量都没有发生大的变化,都是正常范围内的变化。