自欧盟第一个可再生能源指令被采用以来,各成员国出台的支持机制进一步推动了整个欧盟的可再生能源发展。总体来看,可再生能源支持政策涵盖了发电、供热制冷、交通等各个领域,其中绝大多数支持政策集中在发电行业。多年来,已经有多种支持机制和特定政策设计被广泛应用。其中最常用的可再生能源支持机制有上网电价(FIT)、溢价补贴(FIP)、差价合约(CfD)或溢价补贴递减、具有配额义务的绿色证书(GC)等(见表3)。
表3 欧盟可再生能源电力激励政策对比
由于政策框架不同,欧洲各国可再生能源上网电价政策并不存在完全统一的模式,但从应用范围来看,政府强制要求电网企业在一定期限内按照一定电价收购电网覆盖范围内可再生能源发电量的固定上网电价政策是应用最为广泛的模式。固定上网电价政策根据可再生能源种类、装机规模、发电量等因素制定了有差别的上网电价标准和收购期限,具有很强的针对性和可操作性,为投资者和参与者提供了稳定的预期,极大地刺激了可再生能源领域投资。但是随着可再生能源开发规模的扩大,固定上网电价政策也带来了政府可再生能源发电补贴负担过重和居民电价不同幅度上涨等问题。
欧洲各国可再生能源支持机制近期的发展趋势是放弃固定补贴。各国政府从此前采纳的固定上网电价,转而支持溢价补贴和差价合约。这使得各国政府能够在鼓励新增可再生能源发电容量的同时,通过这些机制管理补贴预算负担。采用溢价补贴的代表国家是德国、西班牙、丹麦等,采用差价合约的代表国家是英国。
德国2012年全面引入溢价补贴机制。其设计特点是,可再生能源按照电力市场规则与其他电源无差别竞价上网,承担类似于常规电源的电力系统平衡义务,同时政府为上网可再生能源提供溢价补贴,可再生能源上网电价水平为“溢价补贴 电力市场价格”。这种机制的设计,一方面有利于可再生能源利用其低边际成本的价格优势实现优先消纳;另一方面,由于电力市场零电价和负电价的引入,电力市场供需平衡信息能够及时传导,也避免了可再生能源的过度投资。
英国从2017年起开始实施差价合约机制。其核心是可再生能源按照电力市场规则进入电力市场,由政府管理的专门机构与可再生能源发电企业按合同价格签订长期合同(该合同价格由招标确定且必须低于政府指导价)。在交易过程中,如果市场平均电价低于合同价,则向发电企业予以补贴至合同价;反之须返还高出部分。差价合约机制采用招标确定合同电价的方式,通过合约既保证可再生能源企业的合理收益,又避免了对可再生能源的过度激励。
除了上述最常见的支持类型之外,欧洲还使用其他支持机制,如投资补助、贷款担保、税收优惠等,或结合多种支持机制,激励可再生能源发展。由于欧盟各成员国的气候和地理条件不同,可再生能源产业的规模和实力不同,社会和政治偏好不同,每个国家都选择了一套适用于自身的政策工具。统计显示,欧洲大多数国家偏向于采用固定上网电价和溢价补贴政策。同时,越来越多的国家使用拍卖的方式来实施上网电价和溢价补贴。
(四)绿色投融资引导经济资源流向
欧盟的资金工具覆盖能源产业整个创新价值链,参与能源研究、开发和示范等各个环节,大型投资机构通过绿色信贷、绿色基金等方式,引导经济资源流向更环保的领域,促进能源转型、能源可持续性发展。
发挥绿色金融的杠杆作用,一方面是要控制并收紧涉及化石能源行业的融投资,通过资本向传统化石燃料企业施压,迫使其向低碳燃料供应商转型;另一方面则是通过绿色信贷、绿色基金等方式,支持清洁能源技术研发和产业发展,引导经济资源流向更环保的领域,以绿色融投资,促进能源转型、能源可持续性发展,培育新的增长点。
在欧洲,已出售或承诺出售化石燃料产业投资的大型投资机构包括全球最大主权财富基金挪威政府全球养老基金、欧洲保险龙头法国保险集团安盛、北欧最大的基金管理公司北欧银行资产管理公司等,尤其是政府公共资金正在逐步撤离化石燃料投资。2018年7月,爱尔兰众议院通过化石燃料撤资法案,爱尔兰主权基金——爱尔兰战略投资基金于五年内出售其在煤炭、石油、天然气等全球化石燃料产业的投资,并禁止未来对化石燃料行业再进行任何投资。爱尔兰由此成为全球首个主权基金投资全面撤出化石燃料行业的国家。2019年6月,挪威议会通过决议,要求挪威政府全球养老基金从化石燃料领域撤出超过130亿美元的投资,转投可再生能源项目,其中预计从煤炭领域撤资60亿美元,从石油勘探和生产企业撤资70亿美元。这是该基金迄今为止规模最大的撤资,未来挪威政府全球养老基金将动用200亿美元的资产(相当于其管理资产总额的2%)直接投向未上市的可再生能源项目,并优先投资风能和太阳能发电项目。
面对环保压力和政府减排承诺,为降低自身财务风险,荷兰国际集团、法国农业银行、德意志银行、法国巴黎银行等欧洲金融机构,已先后宣布不再为煤电和煤炭开采项目提供融资。欧洲投资银行则成为全球首个提出削减天然气项目贷款的主要多边金融机构。2019年11月,欧洲投资银行宣布,将在2021年底前停止为一切化石能源项目提供贷款,包括燃煤发电及天然气发电项目。从2021年底开始,该银行资助的能源项目二氧化碳排放限制将从此前的每千瓦时发电量二氧化碳排放量不得高于550克,缩减为每千瓦时发电量二氧化碳排放量不得高于250克。未来10年,欧洲投资银行还将为对抗气候变化以及可持续发展等相关项目释放出超过10000亿欧元的资金。根据这一投资政策,欧洲绝大多数化石能源项目,甚至包括天然气发电项目,都将排除在融资范围外。
2014~2020年,欧盟将预算的至少20%投向了气候变化相关活动,资金高达1800亿欧元。欧盟的资金工具覆盖能源产业整个创新价值链,地平线欧洲(Horizon Europe)、创新基金(the Innovation Fund)、现代化基金(the Modernisation Fund),投资欧洲(Invest EU)等多个资金计划参与能源研究、开发和示范等各个环节。预计欧洲投资银行将在刺激私营部门投资方面发挥重要作用。与5年前相比,欧洲投资银行更多地参与了早期阶段和风险更大的能源项目,在支持能源效率投资和风险更大的创新项目方面发挥着关键作用。如2019年,根据能源技术发展所需的资本密集度和长远需求,欧洲委员会、欧洲投资银行、突破性能源风险投资公司联合成立欧洲突破性能源投资基金,帮助欧洲公司开发创新清洁能源技术。
欧盟上调气候目标,将进一步促进欧洲地区可再生能源的大规模投资。路透社指出,如果2030年55%的减排目标最终写入立法,预计2021~2030年期间,欧洲可再生能源领域将额外增加至少3500亿欧元的投资。欧盟官网指出,为了确保2030年55%减排目标能够获批,将重新修订可再生能源融资机制,旨在帮助成员国更轻松地获得项目融资以及更便捷地推进合作和项目部署。欧委会确定了资金投入的三大优先考虑领域,其中面向未来的清洁技术和可再生能源为第一优先领域;第二优先领域是能源效率,特别是改善公共和私人建筑物的能耗水平;第三优先领域是创新能源技术,包括智能交通工具、智慧基建、大数据等。
三、能源转型的技术驱动
(一)部署CCUS,促进化石能源清洁化
碳捕集、利用和封存技术是世界公认的最有前景的碳减排技术之一。在国际能源署的可持续发展情景中,2019~2070年间,欧洲利用CCUS技术捕集的二氧化碳中,42%来自电力部门;到2050年,捕获的二氧化碳大部分与化石燃料的使用有关。
碳捕集、利用和封存(CCUS)技术在不改变能源结构的前提下,实现碳的有效封存,是世界公认的最有前景的碳减排技术之一,对全球温升控制目标有着重要的意义。
国际能源署数据显示,2019年欧洲能源相关二氧化碳排放总量为39亿吨。其中电力部门为主要排放源(32%),其次是交通部门(25%),工业制造部门(20%),建筑和农业部门(18%)。大约8亿吨二氧化碳为工业排放,主要来自钢铁、水泥和化学品等能源密集型行业。欧洲未来数十年内运行的发电厂还会继续排放二氧化碳。目前,欧洲化石燃料发电厂平均服役年限为28年(燃煤电厂33年,燃气电厂17年),而平均技术寿命约为50年。如果发电厂不进行CCUS改造,或者不提前退役,那么在2019~2070年间,上述这些在运的发电厂,再加上建设中和规划中的发电厂,累计将排放超过250亿吨二氧化碳。
欧洲现有CCUS项目主要部署在北海地区,包括挪威1996年投运的Sleipner项目和2008年投运的Sn?hvit项目,这2个项目的二氧化碳封存能力为170万吨/年。此外还有至少11个总封存能力近3000万吨/年的试点和示范项目正在欧洲其他地方开展,其中有冰岛的CarbFix项目,英国的Drax CCS试点项目,瑞典的STEPWISE项目,西班牙的CIUDEN项目和克罗地亚地热发电厂的一个CCS项目。CCUS工业示范项目呈现数目逐步增多、规模逐步扩大的发展特点。
同时,欧洲CCUS技术的投资环境一直在改善。如欧盟委员会于2020年启动的创新基金对欧盟所有成员国及冰岛和挪威开放,为CCUS等领域的突破性技术提供资金;荷兰SDE 计划支持部署二氧化碳减排技术;英国政府宣布建立不低于8亿英镑(约10亿美元)的碳捕集封存基础设施基金,至少在两地部署CCUS设施。
近日,微软、挪威国家石油公司、壳牌和道达尔签署合作协议,将通过挪威北极光CCUS项目展开合作,并寻找如何协助欧洲CCUS标准化和放大部署规模。北极光项目今年获得挪威政府承诺约20亿欧元的资助,计划每年运输和封存150万吨二氧化碳,并将累计封存1亿吨二氧化碳。挪威政府同时还承诺了约15.5亿欧元,用于资助挪威Longship CCUS项目,包括水泥厂和垃圾发电厂的大规模碳捕集计划。
在国际能源署的可持续发展情景中,预计到2030年,欧洲的二氧化碳捕集量将增加到3500万吨左右,到2050年将达到3.5亿吨,到2070年将超过7亿吨(见图4)。2019~2070年间,利用CCUS技术捕集的二氧化碳中,42%来自电力部门,31%来自工业部门,26%来自交通部门。到2050年,捕获的二氧化碳大部分与化石燃料的使用有关。2050年后,生物能源碳捕获和储存(BECCS)和直接空气碳捕集(DAC)将发挥更为突出的作用。到2070年,电力部门捕获的二氧化碳中三分之二与BECCS有关。
资料来源:IEA图4 欧洲二氧化碳捕集量增长预测
(二)发展替代燃料,减少化石燃料使用
1.氢能技术
氢能开发与利用是世界新一轮能源技术变革的重要方向,是能源系统实现脱碳目标的必然选择。欧洲在发展氢能技术和氢能产业方面拥有诸多优势。到2050年,预计欧洲氢能发电总量能够达到2250太瓦时,占欧盟能源需求总量的四分之一。
作为清洁能源供给体系的重要载体,氢能开发与利用是世界新一轮能源技术变革的重要方向,是能源系统实现脱碳目标的必然选择。欧洲在发展氢能技术和氢能产业方面拥有以下基础。
首先,欧洲在氢能方面拥有强大的研究机构,欧盟、国家和区域各级支持氢能研发。欧盟采取多项举措,如为氢能源生产提供50亿欧元至300亿欧元支持,将下个长期预算中对氢能源项目的扶持资金提升至13亿欧元,通过特别基金项目加大对可再生能源和氢能源基础设施投资等,来推动氢能源技术发展。欧洲氢能学会发布2×40吉瓦绿色氢能倡议计划,以支持欧盟市场绿色氢的生产。德国通过《国家氢能战略》,计划将氢能技术发展成为德国出口的核心业务领域。2019年,德国宣布投资1.8亿欧元用于发展氢能产业。89个欧洲地区和城市宣布参与燃料电池和氢能联合组织(FCH-JU)提出的氢能转型计划,将共同推进约18亿欧元的重大投资项目,以达成未来5年在欧洲部署氢能和燃料电池技术的目标。
第二,欧洲在氢能产业价值链上拥有众多参与者,可以推动氢解决方案的开发和部署。如欧洲先后通过Ene-field、PACE示范项目推广基于氢燃料电池的热电联产系统,目前已经部署了大约10000套燃料电池微型热电联产装置。欧洲四大燃料电池热电联产企业Bosch、SOLIDpower、Vaillant和Viessmann产能超1000套/年。根据欧盟《氢能路线图》,预计到2040年欧盟将部署超过250万套燃料电池热电联产装置,可节省电网电量15太瓦时,除供电外氢能能满足所有商用建筑以及1100万户家庭的供暖需求。在德国,政府通过的kfW433法案,对满足性能要求的燃料电池热电联产装置进行补贴,并要求燃料电池系统总效率高于82%,发电效率高于32%,使用寿命达到10年。
第三,欧洲建有庞大的天然气管网,为氢能应用提供了空间。一方面,天然气供应网脱碳需要氢气。来自欧洲天然气输配网络的管道天然气约占欧洲供热用能的40%、发电用能的15%,利用氢替代天然气供热、发电是实现欧洲能源消费低碳转型最有潜力的发展方向。另一方面,完善的天然气管输网络基础设施可以以最低的成本转换为氢气输送设施。DNV-GL和Kiwa在荷兰联合进行的研究表明,现有的天然气输配网络只需稍加改造或不做改造,即可用于氢气的输送,这对管道天然气逐渐由氢替代提供了有力的设施保障。也就是说,生产商不需要对管网进行重大升级,即可将氢气通过管网输配,或者可以输送用氢气合成的天然气,甚至直接输送纯氢气。这也是欧洲发展氢能的主要优势所在,未来欧洲能源系统转型升级极有可能会充分利用现有天然气管网。
根据欧委会此前发布的《欧盟氢能战略》,欧盟将分三个阶段发展氢能,第一阶段将在2024年前建成至少6吉瓦的绿氢项目;第二阶段为2025~2030年,氢能将成为欧盟能源体系的重要组成部分,将有多个区域制氢产业中心——“氢谷”落成;第三阶段为2030~2050年,重点研究氢能在能源密集型行业的大规模应用。
2019年2月,欧洲燃料电池和氢能联合组织结合17家活跃于氢和燃料电池技术领域的企业的信息和数据,制定并发布《欧洲氢能路线图:欧洲能源转型的可持续发展路径》。报告提出欧洲发展氢能的路线图,明确到2030年欧洲在氢能发电、氢燃料电池汽车、家庭和建筑物用氢、工业制氢用氢等方面的具体目标(见图5)。
资料来源:FCH-JU图5 2030年欧洲各部门用氢目标
到2050年,预计欧洲氢能发电总量能够达到2250太瓦时,占欧盟能源需求总量的四分之一;氢能生产及相关设备的产值将达到8200亿欧元;整个氢能行业可提供540万个高技能就业岗位;欧盟碳排放量将减少约5.6亿吨。
2.生物质能技术
生物质能是唯一可替代化石能源转化成燃料及其他化工原料或产品的碳资源,是应对全球气候变化最有潜力的能源技术方向之一。欧洲是世界上生物柴油产量最大的地区,生物沼气技术世界领先,生物质发电供热在电力和热力系统中发挥着重要作用。
作为清洁可再生的能源形式,生物质能是唯一可替代化石能源转化成液态、固态和气态燃料及其他化工原料或产品的碳资源,也是应对全球气候变化、能源短缺和环境污染最有潜力的发展方向之一。
生物质能源的主要利用形式包括生物液体燃料、生物沼气和生物质发电供热等。在生物液体燃料方面,欧洲以菜籽油为主要原料,是世界上生物柴油产量最大的地区,德国生物柴油已替代普通柴油使用;北欧挪威、芬兰等国已经形成航空生物燃料规模化市场,建立起从原料、炼制、运输到加注和认证的完整产业链。在生物沼气方面,生物沼气提纯后可用来加热、发电或作为车用燃料,欧盟地区沼气技术世界领先,德国、丹麦等国多采用传统全混式沼气发酵工艺,工程技术及装备已达到系列化、工业化水平。2018年,全球沼气产量约580亿立方米,其中德国沼气年产量已超过200亿立方米,瑞典生物天然气满足国内约30%的车用燃气需求。在生物质发电供热方面,生物质发电是可再生能源发电的重要形式,目前全球200多座生物质混燃示范电站中有100多座分布在欧洲地区;欧洲可再生能源供热在供热能源需求总量中占比超过30%的国家有10个(瑞典占比高达70%,芬兰、拉脱维亚和爱沙尼亚占比也都在50%以上),生物质能在这些国家的供热系统中发挥着巨大作用,欧洲独立建筑使用生物质供暖的供热锅炉和壁炉供热效率较高。
生物液体燃料可替代石油基燃料使用及后加工,是链接能源企业、特别是石油公司主营业务和新能源业务的最佳结合点之一。在国际能源署的可持续发展情景中,生物质转化为液体燃料这一新兴技术将推动全球生物燃料供应快速增长。近年间,欧洲大型石油公司纷纷进入生物质能领域,尝试包括燃料乙醇、生物柴油、航空生物煤油等在内的各种生物液体燃料业务。如BP先后收购多家生物能源企业的股份或业务,与杜邦公司成立生物燃料合资公司,率先开发生物燃料丁醇汽油,解决车辆及基础设施与生物燃料兼容性的关键问题。壳牌致力于开发应用第二代纤维素乙醇技术。目前,纤维素乙醇技术可行,但经济成本偏高,随着技术进步,未来有望实现规模化商业生产。2019年,道达尔公司出资改建的法国第一座生物燃料工厂La Mede投产。原料中70%来自植物油、30%来自处理后的废油,产品为绿色柴油和航空生物煤油。
(三)重视系统灵活性,提高可再生能源部署能力
电力系统灵活运行能力被视为电力系统优化的关键,对可再生能源并网至关重要。发展灵活性技术、提高系统灵活性是欧洲电力系统在高比例可再生能源并网过程中必须考虑的问题。未来电池储能将成为平衡欧洲电网、取代气电调峰的更优技术选择。
欧洲是全球可再生能源发展程度较高的地区。高比例可再生能源并网势必会对电力系统的平衡和稳定运行产生诸多影响,并且这些影响会随着可再生能源渗透率的提高而逐步增强,这是各国电力系统在高比例可再生能源并网过程中必须考虑的问题。电力系统灵活运行能力被视为电力系统优化的关键,提高系统灵活性对可再生能源并网至关重要。为提高可再生能源部署水平,欧洲主要在以下几个方面提升现有电力系统灵活性。
在电源侧,广泛应用各种发电机组灵活性提升技术,提高除风电和光伏之外其他发电厂的灵活度。根据欧洲能源转型智能网络技术与创新平台(ETIP SNET)发布的《2021-2024年综合能源系统研发实施计划》,未来4年欧洲在发电灵活性方面主要研发示范任务包括:开发用于风力涡轮机和太阳能光伏最大功率点追踪的有效控件,以实现灵活性和储备共享;增加水力发电和抽水蓄能电站运行灵活性;提高火电灵活性;使用碳中性燃料提高火电燃料灵活性;开发和测试集成灵活中小型火电、供热和制冷、储能的解决方案等。
在电网侧,为了增加电网互联容量,欧盟提出2020年各成员国跨国输电能力至少占本国装机容量的10%,2030年要达到15%。目前,德国和邻国电网间的电力交换能力已经达到25吉瓦,占其总装机容量的12%、冬季最高负荷的30%。欧洲输电系统运营商联盟(ENTSO-E)每两年发布一次电网十年发展规划(TYNDP),ENTSO-E最新发布的TYNDP对跨国电网进一步互联进行了详细规划,利用场景分析深入研究高比例可再生能源结合电动汽车、智能电网和储能等和电网系统的融合,推动系统协调发展。
在用户侧,借助于完善的市场机制,欧洲各国普遍开展了需求侧响应,引导用户根据市场情况改变电力需求,以维持系统平衡。提高电力需求侧的灵活性,主要是综合运用储能、热泵、电动汽车、智能电表等技术手段,提高负荷的可调节性。根据AFRY管理咨询公司的分析,预计未来10年,欧盟27个成员国的需求响应容量将增加一倍以上,从目前的7吉瓦增加到15吉瓦。欧盟电力系统正在变得越来越智能化和分散化。
在电源侧、电网侧和用户侧采用储能技术,提高这些环节的灵活性。目前,欧洲电网侧储能装机容量不足2吉瓦,其中约四分之三是锂离子电池,其他技术包括铅酸、氧化还原液流和钠基电池。欧委会数据显示,目前英国电池储能装机容量约为880兆瓦,是欧洲最大的市场份额;德国电池储能装机容量约530兆瓦。据悉,英国有1350万千瓦电池储能项目正在等待建设。
伍德麦肯兹最新研究数据显示,在欧洲5大电力市场(英国、德国、法国、意大利和西班牙),波动性可再生能源发电(风电、光伏发电)最快有望在2023年成为最大的发电来源。在欧洲上述几个电力市场中,未来将接入较大比例的风电、光伏及其他可再生能源,到2040年,预计将新增169吉瓦风电和172吉瓦光伏发电装机。为了平衡可再生能源激增,抽水蓄能电站、天然气调峰电站、储能系统、电网互联项目等灵活性资源必不可少。预计系统灵活性资源将从2020年的122吉瓦增加到2030年的202吉瓦、2040年的260吉瓦(见图6)。
天然气调峰电站就目前而言,是欧洲电力市场重要的灵活调节电源,但由于燃料和碳价格不断上涨,技术成本却没有大幅下降,在减排政策驱动下,到2030年,储能系统将取代天然气调峰电站。欧洲5大电力市场储能装机容量预计将从目前的3吉瓦(不含抽水蓄能)增长至2030年的26吉瓦、2040年的89吉瓦。伍德麦肯兹预测认为,到2040年,上述市场拥有的储能容量有望实现系统的秒级平衡,其中大部分将来自于电网侧电池储能系统。届时电池储能将成为平衡欧洲电网、取代气电调峰的更优技术选择。