然而,这个传说未必可信,毕达哥拉斯学派有许多严格且奇怪的规矩,比如“禁食豆子”,“东西落下了,不要用手拣起来”等等,最重要的是,在毕达哥拉斯建立的团体中,财产是公有的,而且学派的成员们有一种共同的生活方式,甚至于科学和数学的发现也被认为是集体的,所以更可能的情形是——希帕索斯因违反了毕达哥拉斯学派的规矩而被驱逐出学派。
因此认为无理数是“没有道理的数”实际上是对其的误解。同有理数一样,无理数的命名也是源于翻译问题。实际上,无理数的英文为irrational number,irrational的原意是“不可比的”或“不能表达成比率的”。所谓的“无理数”,不过是“无比数”的误译而已。
无理数无法写成两个整数之比,最著名的例子莫过于对是无理数的证明,其方法是反证法,我们可以假设是一个有理数,即它可以写成两个互素的整数之比
则
则必为一偶数,因此必为一偶数,令
则
则必为一偶数,必为一偶数,则都为偶数,这一结论是荒谬的,因为我们已经假设了是互素的,而两个偶数不可能互素,它们至少还有公因数2,因此假设不成立,是无理数得证。
3 生活中的无理数其中在生活中,我们也离不开无理数。比如你拿一张日常生活中随处可见的A4纸,其长宽之比即约为
而将其对折后,长宽之比仍然为
继续折,无论你折多少次,你得到的永远是“型纸”!这个数,永远都“折”不掉!因为只有这个数才具备这个神奇的性质。
还有著名的黄金分割比
也是一个无理数,其大量存在于绘画、建筑、艺术作品中。