邻接矩阵
拥有n个顶点的图,它所包含的连接数量最多是n(n-1)个。因此,要表达各个顶点之间的关联关系,最清晰易懂的方式是使用二维数组(矩阵)。
具体如何表示呢?我们首先来看看无向图的矩阵表示:
如图所示,顶点0和顶点1之间有边关联,那么矩阵中的元素A[0][1]与A[1][0]的值就是1;顶点1和顶点2之间没有边关联,那么矩阵中的元素A[1][2]与A[2][1]的值就是0。
像这样表达图中顶点关联关系的矩阵,就叫做邻接矩阵。
需要注意的是,矩阵从左上到右下的一条对角线,其上的元素值必然是0。这样很容易想明白:任何一个顶点与它自身是没有连接的。
同时,无向图对应的矩阵是一个对称矩阵,V0和V1有关联,那么V1和V0也必定有关联,因此A[0][1]和A[1][0]的值一定相等。
那么,有向图的邻接矩阵又是什么样子呢?
从图中可以看出,有向图不再是一个对称矩阵。从V0可以到达V1,从V1却未必能到达V0,因此A[0][1]和A[1][0]的值不一定相等。
邻接矩阵的优点是什么呢?简单直观,可以快速查到一个顶点和另一顶点之间的关联关系。
邻接矩阵的缺点是什么呢?占用了太多的空间。试想,如果一个图有1000个顶点,其中只有10个顶点之间有关联(这种情况叫做稀疏图),却不得不建立一个1000X1000的二维数组,实在太浪费了。
邻接表和逆邻接表
为了解决邻接矩阵占用空间的问题,人们想到了另一种图的表示方法:邻接表。