分式不等式的解法步骤和举例,分式不等式例题解法详细步骤

首页 > 经验 > 作者:YD1662024-03-30 00:24:19

1.分式方程

解分式不等式的思路:先转化为整式不等式,再求解。

(1)形如f(x)/g(x)﹥0的分式不等式可转化为整式不等式f(x)·g(x)﹥0求解。

(2)解f(x)/g(x)≥0的分式不等式,转化为整式不等式f(x)·g(x)≥0求解后,应注意分子可取0,而分母不能取0。

2.高次不等式

利用穿针引线法求解。

(1)保证最高次项系数为正,将各因式的根解出。

(2)在x轴上依次标出后,从ⅹ轴上方依次穿过。

(3)奇穿偶不穿,奇次幂的根穿过,偶次幂的根不穿过。

分式不等式的解法步骤和举例,分式不等式例题解法详细步骤(1)

分式不等式的解法步骤和举例,分式不等式例题解法详细步骤(2)

3.绝对值不等式

(1)依据绝对值的定义,表示点到原点的距离

例:lx|﹤3,

分析:即x到原点的距离小于3。

解:-3<x﹤3

丨2x-1丨<5

解不等式-5<2x-1﹤5即可。

(2)平方法

|x-1|<丨3x 1|

两边平方,再移项,利用平方差公式得。

[(x-1) (3x 1)]·[(x-1)-(3x 1)]<0

(3)分段法

|x 3| |x-5|>6

当x<-3时

-(x 3)-(x-5)﹥6

当-3≤x<5时

(x 3)-(x-5)﹥6

当x≥5时

(x 3) (x-5)>6

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.