带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。
光纤种类
以下是对最常用的通信光纤种类的描述。
MMF(多模光纤)
- OM1光纤或多模光纤(62.5/125)
- OM2/OM3光纤(G.651光纤或多模光纤(50/125))
SMF(单模光纤)
- G.652(色散非位移单模光纤)
- G.653(色散位移光纤)
- G.654(截止波长位移光纤)
- G.655(非零色散位移光纤)
- G.656(低斜率非零色散位移光纤)
- G.657(耐弯光纤)
只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。
G.651(多模光纤)
G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。
ITU-T G.651光纤即OM2/OM3光纤或多模光纤(50/125)。ITU-T推荐光纤中并没有OM1光纤或多模光(62.5/125)。
多模光纤(50/125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输可以在同一速度下进行。
G.652光纤(色散非位移单模光纤)
世界上最普遍的单模光纤。可以将波长在1,310nm左右的使信号变形的色散降至最低。您可将1550nm波长的工作窗口用于短距离传输或与色散补偿光纤或与模块共同使用。
G.652A/B是基本的单模光纤,G.652C/D是低水峰单模光纤
G.653(色散位移光纤)
此光纤可将在1,550nm波长左右的色散降至最低,从而使光损失降至最低。
G.654(截止波长位移光纤)
G.654的正式名称为截止波长位移光纤,但普通称为低衰减光纤。低衰减的特性使得G.654光纤主要应用于海底或地面长距离传输,比如400千米无转发器的线路。
G.655(非零色散位移光纤)
G.653光纤在1,550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。
第一代非零色散位移光纤,如PureMetro®光纤具有每千米色散等于或低于5ps/nm的优点,从而使色散补偿更为简便。第二代非零色散位移光纤,如PureGuide® 色散达到每千米10ps/nm左右,使DWDM系统的容量提高了一倍。
G.656光纤(低斜率非零色散位移光纤)
非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。
G.657(耐弯光纤)
ITU-T光纤系列中的最新成员。根据FTTx技术的需求及组装应用而生的新产品。
G.657A光纤与G.652光纤兼容,G.657B光纤无需与传统单模光纤在连接上兼容。
光纤接线技术的分类
光纤接线技术可以分为融接、机械绞接及连接器接线。融接和机械绞接为永久性接线,连接器接线则可以反复拆装。光连接器接线主要用于在光服务的运用和维护中必须切换的接线点,其他场所主要使用永久性接线。
光纤接线中出现损耗的原理
光纤接线必须使光通过的纤芯部分对置,正确定位。
光纤的接线损耗主要由下列原因引起。
(1)轴偏移
连接光纤之间的光轴偏移会引起接线损耗。在通用的单模光纤的情况下,接线损耗大约为轴偏移量的平方乘以0.2的值。(例如,在光源波长为1310nm的情况下,轴偏移量为1μm时,接线损耗约为0.2dB)
(2)角度偏移
连接光纤的光轴之间的角度偏移会引起接线损耗。例如,如果融接之前用光纤切割刀切断的断面角度变大,光纤会以倾斜状态接线,因此必须注意。