设三角形为ΔABC,O为其中一点,[ ]表示向量,∠A,B,C所对边分别为a,b,c
1.若a[OA]+b[OB]+c[OC]=0,则O为内心,角平分线的交点
2.若[OA]+[OB]+[OC]=0,则0为重心,中线的交点
3.若[OA]*[OB]=[OB]*[OC]=[OC]*[OA],则0为垂心,高的交点
4.若[OA]²=[OB]²=[OC]²,则0为外心,中垂线的交点
设三角形为ΔABC,O为其中一点,[]表示向量,∠A,B,C所对边分别为a,b,c1.若a[OA]+b[OB]+c[OC]=0,则O为内心,角平分线的交点2.若[OA]+[OB]+[OC]=0,则0为重心,中线的交点3.若[OA]*[OB]=[OB]*[OC]=[OC]*[OA],则0为垂心,高的交点4.若[OA]²=[OB]²=[OC]²,则0为外心,中垂线的交点