变压器驱动电路图讲解,驱动变压器原理

首页 > 机械设备 > 作者:YD1662023-05-23 00:17:41

图(08)

现在我们看看在PWM的一个周期内都发生了些什么事情。

图(08)是中等占空比时驱动变压器初级两端电压波形,图(09)是分立元件Q1~Q4构成全桥,全桥的输出供变压器T驱动大功率半桥的电路。

首先,这样的波形对变压器来说可以实现,因为横轴上面和横轴下面面积相等,即一个周期内伏秒积为零,变压器铁芯不会因伏秒积不为零而出现磁饱和。

图(08)中时刻0到时刻t1,Q2和Q3导通,Q1和Q4关断,变压器T初级绕组Z1两端电压极性如图中正负符号所示。由变压器各绕组同名端可知,次级绕组Z2和Z3两端电压极性如图(08)所示,MOS管T1门极对源极为正,T1应该导通。而T2门极对源极为负,这没有关系。目前使用的大功率MOS管都是增强型,对N沟道MOS管,门极对源极电压为零固然MOS管关断,门极对源极为负仍然是关断。

时刻0到时刻t1,电流方向如图(08)中红色箭头所示。千万注意:MOS管门极源极之间不是电阻,而表现为一个电容,所以在矩形波的前沿瞬间电流很大,随即降低到相当小,在时刻0到时刻t1这段时间内电流变化很大,并非总是一样大的。所以红色箭头只表示电流方向,并不表示电流大小。

变压器驱动电路图讲解,驱动变压器原理(9)

图(09)

时刻t1,两支MOS管应该关断,驱动信号应该为零。此时刻应该让Q3关断而Q2Q4导通,以便驱动变压器三个绕组两端电压均为零。

但是前面已经说过,MOS管门极与源极之间是个电容,这个电容已经在0~t1这段时间里面被充电。现在要让门极与源极之间电压为零,这个电容必须放电,无论T1还是T2门极电容都必须放电。放电过程中,门极源极之间电容从能量角度来说是电源,变压器绕组Z2和Z3成为初级,而Z1是次级。两MOS管门极电容放电电流方向如绿色箭头所示。

Q4已经导通,电流从Q4集电极流向发射极,这没有问题。问题是电流不可能从Q2发射极流向集电极,因为Q2基极对发射极为正(这样Q2才会导通),电流将流入Q2基极,而基极电路通常阻抗较高。于是,变压器绕组Z1两端不能形成短路,T1和T2门极电容也就不能放电,T1无法关断。

所以,Q2和Q4必须反并联二极管,图中可见:绿色箭头方向的电流可以经二极管D1形成回路,也就是说,时刻t1到时刻t2这段时间里面绕组Z1被Q4和D1近似短路。由变压器特性可知,Z2和Z3绕组也相当于短路,T1和T2门极放电,门极对源极电压接近于零,T1和T2均关断。这样才符合我们的要求。

显然,Q4反并联的二极管D2是供时刻t3到时刻t4这段时间里面短路Z1之用。也就是MOS管T2从导通到关断。两个MOS管门极电容放电之用。

D1和D2最好是使用萧特基二极管,压降较小,使得变压器Z1绕组在两个MOS管需要关断时更接近于理想的短路。

显然,只有具备了与三极管反并联的二极管D1和D2,我们才能够使用变压器驱动半桥或者全桥,而且变压器在每个周期中均能够实现磁复位(伏秒积为零)铁芯不会进入磁饱和。改变占空比时仍然能够保证变压器不会磁饱和,且半桥两个功率管均正常开关。这就是图(01)中二极管D1和D2的由来。

二极管D1和D2也可以与Q1和Q3并联,不过那样的话,Q1~Q4的驱动顺序必须改变:要变压器绕组Z1两端短路,必须让Q1和Q3导通,而Q2和Q4关断。D1D2并联于Q1Q3时的驱动波形和D1D2并联于Q2Q4时的驱动波形不一样。

上一页123末页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.