在我们研制的某320VDC/12VDC 25A变换器中对常规变压器和平面变压器进行了比较。主电路为双管反 激电路,开关频率100KHZ。按照普通高频变压器设计方法采用两个EI33型磁芯并起来使用,原边30匝,绕 组使用直径0.81mm的漆包线;副边2匝,绕组使用0.3mm的铜皮,2层并联。
若磁芯不变,采用PCB绕组时,为减少成本,应用了多块双面板来实现。原边绕组PCB每层安放3匝, 线宽=1.5mm,每块PCB上下两面可布置6匝绕组(如图7所示)构成原边绕组需要5块双面板;副边绕组电流 大匝数少,PCB每层安放1匝每块PCB上下两面可布置2匝(如图8所示),用4块并联。每块PCB厚0.4mm,整 个绕组窗口高度只需6.8mm。若采用多层PCB做绕组,整个绕组窗口高度只需3mm。
已知标准的EI-33磁芯的窗口高度为19.25 ,与线包的厚度相差很大,为此对两个EI-33磁芯各作 磨削加工,以减小磁芯窗口的高度并与线包得以良好配合。
经磨削修正后的EI―33磁芯,除窗口高度恰好满足包装配外,磁芯的重量和体积也得以减少。后装 配成的变压器结构呈扁平型。这样变压器的表面散热面积增加了,面积与体积的比值较大,与常规铁芯相 比,平面变压器的热阻较小,提高了热性能。
3.寄生效应与绕组布局
平面变压器的一、二次侧绕组交织可以大限度减小漏电感,并且可控制漏电感的大小。然而, 平面变压器漏电感减小的同时, 寄生电容却增大。而若要减小寄生电容,则需增大层与层之间的距离, 这就与减小漏感相矛盾。同时为提高平面变压器的功率水平,绕组大多采用并联形式以提高电流处理能力。 但是各绕组层之间的相对位置、连接方式或其他偶然因素的影响,都会造成各并联绕组层之间不均流, 从 而给绕组带来附加损耗。
以二种类型的平面变压器研究其寄生效应。每一类变压器的绕组结构各不相同,所以它们有不同的漏 感和寄生电容。图9为所述的二种类型变压器绕组的结构布局:
1#:初级绕组和次级绕组对称组合
2#:初级绕组和次级绕组交替组合
由于初级绕组与次级绕组间的寄生电容Cps严重影响着变压器的高频特性,故要其尽量小。在多层印制电路板变压器结构中,其绕组是由平行的扁平面导电条状铜箔组成的,则两个绕组间的电容可使用两块平行导电板之间的电容计算公式直接求得:Cps=ε·s/d。可见由于平面变压器的结构特性将会有较大的寄生电容。
表 三种不同绕组结构变压器的参数对比