专题简析:
已知两个数的和与两个数间的倍数关系,求这两个数分别是多少,像这样的应用题,通常叫做和倍问题。要想顺利地解答和倍应用题,最好的方法就是根据题意,画出线段图,使数量关系一目了然,从而正确列式解答。
解答和倍应用题,关键是要找出两数的和以及与其对应的倍数和,从而先求出1倍数,再求出几倍数。数量关系可以这样表示:
两数和÷(倍数+1)=小数(1倍数)
小数×倍数=大数(几倍数)
两数和-小数=大数
例题1 学校将360本图书分给二、三两个年级,已知三年级所分得的本数是二年级的2倍,问二、三两个年级各分得多少本图书?
思路导航:将二年级所得图书的本数看作1倍数,则三年级所得本数是这样的2倍。如图所示:
由图可知,二、三年级所得图书本数的和360本相当于二年级的(1+2)倍,则二年级所得图书本数的360÷(1+2)=120本,三年级为120×2=240本。
练习一
1,小红和小明共有压岁钱800元,小红的钱数是小明的3倍。小红和小明各有压岁钱多少元?
2,学校将360本图书分给二、三年级,已知三年级所得本数比二年级的2倍还多60本。二、三年级各得图书多少本?
3,甲桶有油25千克,乙桶有油17千克,乙桶倒入多少千克油给甲桶后,甲桶油是乙桶的5倍?
例题2 小宁有圆珠笔芯30枝,小青有圆珠笔芯15枝,问小青给小宁多少枝后,小宁的圆珠笔芯枝数是小青的8倍?
思路导航:我们把变化后小青的圆珠笔芯枝数看作1倍数,那么小宁与小青圆珠笔芯的枝数和相当于变化后小青枝数的9倍,所以变化后小青的枝数为(30+15)÷(1+8)=5枝,再用15-5=10枝,则表示小青给小宁的枝数。
练习二
1,红红有邮票80张,佳佳有邮票60张,要使红红的邮票张数是佳佳的4倍,那么佳佳必须给红红多少张邮票?
2,甲水池有水69吨,乙水池有水36吨,如果甲水池中的水以每分钟2吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍?
3,甲书架有图书18本,乙书架有图书8本,班图书管理员又买来图书16本,怎样分配才能使甲书架图书的本数是乙书架的2倍?
例题3 被除数与除数的和为320,商是7,被除数和除数各是多少?
思路导航:由商是7可知,被除数是除数的7倍,把除数看作1份数,被除数就有这样的7份,一共7+1=8份。
除数:320÷8=40
被除数:40×7=280
练习三
1,被除数和除数和为120,商是7,被除数和除数各是多少?
2,被除数、除数、商的和为79,商是4,被除数、除数各是多少?
3,两个整数相除商是21,余数为1,已知被除数、除数、商、余数的和一共是441。被除数、除数各是多少?
例题4 两数相除商为17余6,被除数、除数、商和余数的和是479。被除数和除数分别为多少?
思路导航:被除数、除数、商和余数的和是479,减去商17和余数6,得到被除数与除数的和为479-17-6=456;又因为被除数比除数的17倍多6,所以456-6=450就相当于除数的(17+1)倍,因此除数为450÷(17+1)=25,被除数为25×17+6=431。
练习四
1,两个整数相除商14余2,被除数、除数、商和余数的和是243,被除数比除数大多少?
2,在一个减法算式里,被减数、减数与差的和等于240,而减数是差的5倍。差是多少?
3,学校买来83本书,其中科技书是故事书的2倍,故事书比文艺书多5本,这三种书各多少本?
例题5 两个数之和是792,其中一个数的最后一位数数字是0,如果把0去掉,就与另一个数相同。这两个数分别是多少?
思路导航:把一个数的最后一位数字0去掉,就与另一个数相同,说明这两个数中大数是小数的10倍。又已知两个数之和是792,那我们就可以求出这两个数分别是多少了。
小数:792÷(10+1)=72
大数:72×10=720
练习五
1,两个数之和是253,其中一个数的最后一位数字是0,如果把0去掉,就与另一个数相同。这两个数分别是多少?
2,师徒两人加工一批零件共693个,师傅加工零件个数的末位数字是0,如果去掉这个0,加工的个数就与徒弟一样多。师徒二人分别加工零件多少个?
3,甲、乙两数的和是209,甲数缩小10倍就和乙数同样大,甲、乙两数分别是多少?