第五章 相交线与平行线
5.1相交线
5.1.1相交线 有关概念
邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:如果一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
对顶角的性质: 对顶角相等.
5.1.2垂线 有关概念
1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。 从垂直的定义可知,
判断两条直线互相垂直的关键:只要找到两条直线相交时四个交角中一个角是直角。
1.1 数字与字母的乘积,这样的代数式叫做单项式.
几个单项似的和叫做多项式.
一个单项式中,所有字母的指数和叫做这个单向式的次数.
一个多项式中,次数最高的项的次数,叫做这个多项式的次数.
1.3 同敌数幂相乘,底数不变,指数相加.
1.4幂的乘方,底数不变,指数相乘.
积的乘方等于每个因数成方的积.
1.4同底数幂相除,底数不变,指数相减.
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式.
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式.
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等.比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B.
等角的补角相等.比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B.
余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角.∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等.比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B.
等角的余角相等.比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B.
对顶角相等