什么是量子力学有什么用,量子力学学了有什么用

首页 > 科学 > 作者:YD1662022-11-19 10:00:01

当然,关于不确定性原理,这里只顺便提一嘴。现在我们只要知道测量x方向的自旋不仅会让银原子处于x方向本征态,也会影响z方向自旋,让银原子在z方向上从自旋向上本征态变成叠加态就行了。

这样,第三组斯特恩-盖拉赫实验就可以完全走通了:银原子通过第一个z方向磁场后变成了z方向自旋本征态,向上偏转的银原子通过x方向磁场后变成了x方向自旋本征态。与此同时,由于z方向和x方向的自旋不对易,它们无法同时处于本征态。所以,当银原子处于x方向自旋本征态的同时,在z方向就会从自旋向上本征态变成叠加态

于是,处于z方向自旋叠加态的银原子通过第二个z方向磁场后自然就分裂了,这就是最后的那个惊天大分裂,就是那个让经典力学百思不得其解的分裂。

至此,斯特恩-盖拉赫实验就全部走通了

11量子力学

可以看到,为了解释斯特恩-盖拉赫实验,我们引入了许多全新的假设。我们假设银原子可以处于自旋向上和自旋向下的叠加态,假设测量会影响系统的状态,假设如果两个力学量不对易,测量一个力学量会影响另一个的情况……

这些假设已经完全超出了经典力学的范畴,但顺着斯特恩-盖拉赫实验,你又会发现非如此不可。物理学家其实是很保守的,但凡经典物理修修补补还能用,大家也不至于掀桌子,量子力学是被逼出来的。

什么是量子力学有什么用,量子力学学了有什么用(17)

有了这些全新的假设,我们就能定性地分析斯特恩-盖拉赫实验了。但是,光有定性的分析还不够,我们还要用数学语言定量地描述它们。

比如,你说银原子可以处于自旋向上和自旋向下的叠加态,那如何描述这种状态?系统处于叠加态还是本征态,测量自旋的结果会完全不同,那自旋这种力学量要如何描述?系统状态发生了变化,又要如何描述?等等。

我们知道,系统处于不同的状态,测量力学量会有不同的结果:处于本征态,测量结果是确定的;处于叠加态,测量结果不确定。如果系统状态发生了变化,各个力学量的测量结果也会随之发生变化。

在这样的语境下,系统状态就处在了一个非常核心的位置。所以,我们要先描述系统状态,那么,如何描述系统的状态呢?老办法,想知道量子力学里的情况,我们就先去经典力学看看。在经典力学里,我们是如何描述系统状态的呢?

假设有两个苹果,一个在北京,一个在武汉,我们会觉得它们的状态不一样,因为位置不同。当然,就算它们的位置一样,但如果一个静止,另一个却在运动,我们还是会觉得它们的状态不一样,除非它们的位置速度都相同。

也就是说,在经典力学里,我们可以用物体的位置和速度(或动量)这样的力学量来描述系统的状态

如果两个质点的位置和动量(速度)都一样,它们在时空中的状态就被唯一确定了。在和牛顿力学等价的哈密顿力学里,我们会以位置和动量为横、纵轴构建一个叫相空间的东西,相空间里的一个点(有个确定的位置和动量)就代表了一个运动状态。

与此同时,由于位置动量都可以直接观测,我们又用这些可观测量来描述系统状态,那系统状态可观测量之间就没啥区别了。另外,在经典力学里,无论系统处于什么状态,测量结果都是确定的,所以,测量结果可观测量之间也没啥区别了。

于是,在经典力学里,系统状态可观测量观测结果就都没啥区别了,都可以用位置动量来描述。你想确定一个粒子的状态,确定它的位置和动量就好了;粒子的可观测量也是位置、动量;最后的观测结果,无非就是把位置和动量的值读出来。

但是,量子力学里的观测结果却是跟系统状态有关的,系统处于本征态还是叠加态,观测结果会很不一样。自旋、位置这样的可观测量跟系统状态也不是一回事。这样的话,你再想用位置动量打发它们三个就不可能了。

那么,到了量子力学,我们要如何描述系统的状态呢?

12系统状态

能否还像经典力学那样,直接用可观测量来描述系统状态?比如,银原子的自旋可以取向上和向下,那我们就用S=0表示自旋向上的状态,用S=1表示自旋向下的状态,用这样的变量S来描述系统状态行不行?

不行!

如果银原子只处于本征态,我们确实可以用S=0描述自旋向上本征态,用S=1描述自旋向下本征态。但是,如果银原子处于叠加态呢?

有人说,那我用S=0.5描述银原子处于自旋向上和向下的叠加态,用S=0.7表示测量时有更大概率自旋向下,用S=0.3表示有更大概率自旋向上,行不行呢?

在这个特例里是可行的,但它无法推广。我们这里是碰巧自旋只能取S=0、S=1这样的分立值,如果现在讨论的不是自旋,而是位置呢?银原子的位置x本身就可以连续取值,x=0.3也只能表示某个位置本征态,那你要如何表示位置的叠加态?

所以,想用一个变量S描述银原子的自旋状态是不行的,变量不够用。不够用怎么办?简单,一个不够用那就再加一个呗,反正又不费电。

比如,我们可以用S0表示自旋向上本征态,用S1表示自旋向下本征态,如果银原子处于叠加态,我们就把它们加起来,用S=S0 S1描述叠加态不就行了么?

如果想改变叠加的权重,调节S0、S1前面的系数就行了。比如,我们可以用S=0.6S0 0.8S1表示测量时有(0.6)²=0.36的概率自旋向上,有(0.8)²=0.64的概率自旋向下(为什么是平方大家后面会明白)。

这样,不管力学量是取分立值(自旋)还是连续值(位置),我们都能描述叠加态了。你取几个值,我就弄几个变量,你处于什么样的叠加态,我就相应调节变量前的系数,再把它们加起来就完了。

而且,当你把银原子的叠加态写成S=S0 S1这样时,如果S0前面的系数为0,那就是S=0×S0 S1=S1,这不就是自旋向下的本征态么?同理,让S1的系数为0也可以表示自旋向上的本征态。这样,叠加态本征态就都可以用S=S0 S1的形式来描述,调节S0、S1的系数就可以表示不同权重的叠加态,本征态就可以看成一种特殊的(除它以外系数都为0)叠加态。

所以,用S=S0 S1描述银原子的自旋状态是一个不错的选择。

那么,当我们把系统状态写成S=S0 S1的时候,我们这是整了一个啥玩意出来了呢?有没有觉得有点眼熟?如果不够眼熟,那我把S0换成x,把S1换成y,这样S就可以写成S=x y,这样总眼熟了吧?

没错,这就是一个矢量啊!

什么是量子力学有什么用,量子力学学了有什么用(18)

你看,如果我们把S0和S1看成横坐标纵坐标,那它们就构成了一个平面,S=S0 S1就代表这个二维平面里的一个矢量。因为S0、S1的系数都是1,所以S=S0 S1就代表了从坐标原点(0,0)到(1,1)的一个矢量,记作S=(1,1)

也就是说,如果我们想在量子力学里描述系统的状态,用一个数是不行的,得用一个矢量。这个用来描述系统状态的矢量,就被称为态矢量

态矢量确定了,每个基矢的系数(坐标)就确定了,我们就能知道银原子是处于本征态还是叠加态,知道测量时有多大概率自旋向上,多大概率自旋向下。虽然不知道结果到底是自旋向上还是向下,但概率知道了,我们还能算出它的平均值

也就是说,态矢量确定了,虽然自旋的具体取值不确定,但它的平均值却是确定的。我们正是在这个意义上说态矢量完全描述了系统的状态,这跟经典力学完全不一样。

但大家也清楚,自旋是粒子的内禀性质,就像质量、电荷一样,跟粒子在时空中的位置、速度无关。所以,当我们只考虑自旋时,粒子的自旋态空间其实是一种内部空间。如果我们不考虑自旋,而是考虑粒子在外部时空中的运动情况,那就要看它的位置和动量了。

银原子的自旋可以取两个值,我们用S=S0 S1表示它的状态,这是一个二维的态矢量,对应的自旋态空间是一个二维空间。而位置可以取无穷多个值,我们就要用S=S0 S1 S2 ……表示它的状态,这是一个无穷维的态矢量,对应的态空间一个无穷维空间

如果你既想描述粒子的自旋,又想描述它在外部时空的情况,那就得把这两个态空间“加”起来,在数学上就是对它们做一个张量积

由此可见,大家常见的矢量都在二维、三维欧式空间里,而态矢量却可以在无穷维空间。另外,量子力学里的态矢量不再局限于实数,而把范围扩大到了复数。这部分数学内容我不打算多讲,大家只要知道态矢量所在的空间并不是欧式空间,而是一个范围更大的空间就行了。这个空间,我们称之为希尔伯特空间,态矢量是希尔伯特空间中的矢量。

也就是说,在量子力学里,我们用希尔伯特空间中的矢量描述系统状态,这是我们第一个非常重要的结论。

13力学量

知道如何描述系统状是一个巨大的进步,但这里有个问题:描述系统状态的是希尔伯特空间中的矢量,而它是无法直接观测的。你想想,态矢量是二维、三维、N维,甚至无穷维空间中的一个矢量,你能直接观测么?

不能!

经典力学里,我们用位置动量描述系统的状态,而位置和动量本身就可以直接观测。到了量子力学,描述系统状态的是希尔伯特空间中的态矢量,而它无法直接观测,可以直接观测的是自旋、位置、动量这些力学量。

所以,如果你的理论不想跟实际脱节,那就得想办法描述这些力学量。我们用态矢量描述系统状态,那自旋、位置、动量这些力学量要如何描述呢?

我们知道,测量自旋的结果跟系统状态有关:银原子处于本征态,测量结果是对应的本征值;银原子处于叠加态,测量结果就有可能是自旋向上,也有可能自旋向下。如果态矢量确定了,每个基矢前面的系数(坐标)就确定了。系数确定了,测量时是各个结果的概率也就确定了。

如果概率分布确定了,力学量的平均值也就确定了。而平均值,是可以直接观测的,这一点很重要。

也就是说,虽然态矢量无法直接观测,力学量在一般情况下也没有确定值。但是,如果态矢量确定了,力学量的平均值就确定了。态矢量无法直接观测,但力学量的平均值可以直接观测啊,我们可以从这里入手。

由于自旋没有经典对应,不方便理解,我们来看看大家更熟悉的位置

什么是量子力学有什么用,量子力学学了有什么用(19)

假设电子只能处于x=1和x=2两个位置,跟自旋类似,如果电子处于位置叠加态,测量位置时就有一定概率发现电子处于x=1处,有一定概率发现电子处于x=2处。如果两种概率都是50%,那位置的平均值就是x=1×0.5 2×0.5=1.5;如果处于x=1的概率是70%,处于x=2的概率是30%,那位置的平均值就是x=1×0.7 2×0.3=1.3。

可见,态矢量确定后,概率分布也就确定了,虽然每个电子的位置依然不确定(可能在x=1,也可能在x=2),但位置的平均值却确定了(两个态矢量分别对应x=1.5和x=1.3)。

这里要说明一下,经典力学里测量平均值的方法,通常是测一次记下一个数,再测一次,再记下一个数,最后求平均。但在量子力学里却不能这么干,因为量子力学里的测量会改变系统的状态

电子处于某个叠加态,你测一下位置,它就会变成某个位置本征态,你再去测量这个处于位置本征态的电子,测量结果就会一直是这个本征值,这显然就不对了。

所以,如果你想测量处于叠加态电子的位置平均值,就得提前准备许多和它状态完全相同的电子,然后分别测量每一个电子的位置。测量一个就记一个位置(注意,每个电子只测一次),然后测下一个电子,最后对所有的位置求平均,这样才能测出这个状态下的位置平均值。

于是,我们就清楚了:如果系统状态确定了,虽然力学量不一定有确定值,但力学量的平均值却一定是确定的。而平均值又可以直接观测,这样,我们就在系统状态和可观测量之间架起了一座桥梁。

在量子力学里,系统状态是用希尔伯特空间中的矢量来描述的。现在我们想求这个状态下的力学量平均值,就必然要对这个矢量进行一些操作,让它产生一个实数(平均值)。那么,能对矢量进行操作、变换的东西是什么呢?

算符

算符可以作用在一个矢量上,把它变成另一个矢量。比如,我们把一个矢量平移到另一个地方,完成这个操作的就叫平移算符;把一个矢量旋转一下变成另一个矢量,就叫旋转算符;把一个矢量投影到某个坐标轴,就叫投影算符

什么是量子力学有什么用,量子力学学了有什么用(20)

上一页12345下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.