什么是量子力学有什么用,量子力学学了有什么用

首页 > 科学 > 作者:YD1662022-11-19 10:00:01

也就是说,如果我们测出了电子在某个状态的位置平均值,现在你要用算符对描述这个状态的态矢量进行一番操作,让态矢量“吐”一个实数出来(当然,算符直接作用在矢量上只能得到另一个矢量,想得到一个数还得借助它的对偶矢量,这里我们不细说),并且让这个实数就等于我们测量得到的位置平均值。

这样的话,看起来就是有一个算符作用在态矢量上,经过一番操作后得到了位置的平均值。在这个意义上,我们说这个算符描述了位置这个力学量,叫它一声位置算符不为过吧?

在数学上,算符可以用矩阵来表示,一个矢量跟一个矩阵相乘,其结果还可以是一个矢量,这就相当于对矢量进行了一个变换。在各种变换里,有一种变换很特殊:它对某个矢量进行变换的结果,就好像是把原矢量拉长或缩短了一定倍数

当然,矩阵的这种变换只对一些特殊的矢量成立,我们把这些特殊矢量叫做这个矩阵本征矢量(特征矢量),这个拉长或缩短的倍数就叫本征值(特征值)。

名字都取成这样了,相信大家不难看出它跟量子力学的关系。在量子力学里,我们用矢量描述系统状态,用算符描述力学量。而算符又可以用矩阵来描述,于是,对算符A来说,也可以出现当它作用在某个态矢量|Ψ>上时,就好像把这个态矢量|Ψ>拉长了a倍。

写成方程就是:A|Ψ>=a|Ψ>,这就叫算符A的本征方程,|Ψ>是本征态,a就是对应的本征值。

需要注意的是,这个方程左边的A是一个算符,用矩阵来描述,右边的a是一个数。所以,你可千万别把方程左右两边的|Ψ>给约去了,然后得到A=a(很多初学者容易闹这样的笑话)。

于是,数学物理就对上了:我们用矢量描述系统状态,用算符描述力学量。算符可以写成矩阵的形式,而矩阵有对应的本征矢量和本征值,它们就对应了本征态以及测量力学量时可能出现的结果

这样的话,你想知道力学量可以取哪些值,解对应算符A的本征方程A|Ψ>=a|Ψ>就行了。你想知道力学量在某个状态下的平均值是多少,用算符A作用在对应的态矢量上,经过一些操作也能算出来。

而且,不同算符之间一般不能交换次序,也就是我们前面说的不对易,这是量子力学非常重要的一个特点。

这样,只要知道了算符的情况,就能知道对应力学量的情况。于是,我们就得到了第二个极为重要的结论:在量子力学里,我们用算符描述力学量,而且不同算符之间一般不能交换次序

由于力学量和测量密切相关,因此,第三个极为重要的结论是关于测量的:我们测量一个力学量,测量结果只可能是对应力学量算符的本征值之一

这个结论几乎不用作过多说明,因为我们一直就是这么*。我们早就知道测量银原子的自旋会让系统从叠加态变成某个本征态,测量结果就是对应的本征值。现在,我们只不过是知道了,原来这些本征态和本征值是跟一个算符对应起来的。

在斯特恩-盖拉赫实验里,自旋对应的算符是泡利矩阵,解泡利矩阵的本征方程就能得到两个本征矢量和两个本征值,分别对应自旋向上和自旋向下。去测量银原子的自旋,结果也只能是泡利矩阵的两个本征值之一。

当然,由于测量结果必须是实数,这对算符会有一定的要求(必须是厄米算符),具体概率也都可以算,这些就不细说了。

这样,力学量问题就圆满解决了。

14静态的图像

此时,如果这里有个电子,我们就能知道如何描述电子的状态,知道如何描述它的力学量,也知道力学量可以取哪些值,对应的概率是多少,平均值又是多少,我们知道了电子此刻的一切。

如果你是一位画师,你可以把电子此刻的物理图像画下来,但是,也仅仅是画下此刻的一帧图像。因为你并不知道电子在下一刻的状态,于是就不知道下一刻的概率分布,不知道下一刻的力学量平均值,也就没法画出下一刻的物理图像。

所以,我们现在描绘的是一幅静态的量子图像,它不能动。如果我们想让静态的量子图像动起来,想描绘运动变化的量子世界,就得知道系统下一刻会处于什么状态。

也就是说,我们必须知道系统状态是如何随时间变化的,知道如何根据系统此刻的状态求出它下一刻的状态,这就是量子动力学的问题。

那么,如何找出系统状态随时间的变化规律呢?能从上面的结论推出来么?不能,因为我们现在只知道要用矢量描述系统状态,并不知道它如何随时间变化。

还是老规矩,想知道量子力学里的情况,我们先去经典力学里看看。

在牛顿力学里,知道了物体的位置速度,就知道了物体的状态。如果你还想知道物体下一刻的状态,也就是想知道物体下一刻的位置和速度,要怎么做呢?

很简单,学过中学物理的朋友都清楚(不清楚的可以先看看《》):想知道物体在下一刻的位置和速度,就得先找到物体受到的合外力F,然后利用牛顿第二定律F=ma算出物体的加速度a。有了加速度,我们就能根据物体此刻的速度算出它下一刻的速度,进而求出下一刻的位置。于是,我们就知道了物体在下一刻的状态。

也就是说,我们之所以能求出物体下一刻的状态,关键就在于牛顿第二定律F=ma。正是因为有了F=ma,我们才能根据物体此刻的位置和速度求出它下一刻的位置和速度,才能知道系统的状态会如何随时间变化,才能描绘出物体的运动图像。

同理,如果我们想让量子图像也动起来,想知道量子力学里的系统状态如何随时间变化,我们也要找一个类似牛顿第二定律F=ma这样的方程。

什么是量子力学有什么用,量子力学学了有什么用(21)

牛顿第二定律是怎么来的?它是从牛顿力学的其它结论推出来的么?

当然不是!每个理论都有一些最基本的假设,它们是这个体系里最底层的东西,是推不出来的(当然,如果以后发现了更深刻的理论,有了更基本的假设,能从那里把这些假设推出来,那就是另外一回事了),它们的正确性只能由实验来保证。很显然,牛顿第二定律F=ma就是牛顿力学的一个基本假设。

同样的,量子力学里描述系统状态随时间变化的方程也应该是一个基本假设,它也没法从量子力学的其它结论里推出来,它的正确性也只能由实验来保证。

1925年,在白雪皑皑的阿尔卑斯山,在各种新思想的刺激下,在一位神秘女子的陪伴下,有个人得到了这个描述系统状态随时间变化的方程,得到了这个相当于牛顿力学里F=ma的方程,这就是大名鼎鼎的薛定谔方程。写出这个方程的大佬,自然就是薛定谔

什么是量子力学有什么用,量子力学学了有什么用(22)

15薛定谔的工作

相信大家都听过薛定谔方程,各种科普书也会提到它。但是,大部分人都只知道薛定谔方程很重要,却不知道它为什么重要,也不知道它到底在讲什么。

现在大家心里有数了:薛定谔方程是描述系统状态随时间变化的,它能让静态的量子图像动起来,就像牛顿力学里的F=ma一样,重要性不言而喻。

那么,薛定谔方程是如何描述系统状态随时间的变化的呢?

我们知道系统状态用态矢量来描述的(第一个结论),我们采用狄拉克的记号,把态矢量记作|Ψ>。这样,你想知道系统状态如何随时间变化,就是想知道态矢量|Ψ>在不同时间t会取什么样的值,这就是一个关于时间t的函数,我们记作|Ψ(t)>。

t取不同的时间,|Ψ(t)>就会有不同的取值,这不就是态矢量|Ψ>随时间变化的规律么?所以,薛定谔方程想描述系统状态随时间的变化,就是要说明|Ψ(t)>应该遵守什么样的规律。那么,它会遵守什么样的规律呢?

由于薛定谔方程是量子力学的基本假设,无法从其它结论里推出来,那就只能靠“猜”了。当然,这不是乱猜,而是要基于事实分析,利用缜密的逻辑和合理的想象提出一些假设,然后用实验来验证。

薛定谔当年主要是看到了“光学和力学之间的相似性”,进而把光学的一些结论推广到了力学,最终得到了薛定谔方程

他是怎么做的呢?

首先,薛定谔注意到几何光学波动光学的短波长极限。这个好理解,当光的波长越来越短时,光波看起来就越来越像光线,波动光学自然就慢慢趋近于几何光学。

什么是量子力学有什么用,量子力学学了有什么用(23)

然后,薛定谔注意到,作为几何光学基本方程的程函方程跟分析力学里的哈密顿-雅克比方程非常相似。于是,薛定谔就想:如果几何光学是波动光学的短波长极限,那么,跟几何光学相似的分析力学会不会也是某种波动力学的极限?

也就是说,有没有可能说我们现在的力学只是“几何力学”,它只是某种波动力学的极限(就像几何光学只是波动光学的极限那样)?并且,这种波动力学里某个方程的短波长极限,刚好就是“几何力学”里的哈密顿-雅克比方程

答案我们都知道,这种波动力学就是量子力学,薛定谔方程的短波长极限就是哈密顿-雅克比方程。

当然,这不是什么巧合,并不是说薛定谔无意中发现了一个方程,然后这个方程的极限刚好就是哈密顿-雅克比方程。而是反过来:薛定谔就是要找一个极限是哈密顿-雅克比方程的东西,然后才找到了薛定谔方程,而这种波动的力学就是量子力学。

按理说,这种想法是非常自然的。物理学家只要注意到了程函方程哈密顿-雅克比方程的相似性,知道几何光学和波动光学的关系,考虑是否存在一种波动力学就是很自然的一件事。那么,为什么直到薛定谔才开始认真考虑这个事呢?

其实,哈密顿本人就注意到了光学和力学之间的这种相似性,因此也有人说哈密顿距离发现薛定谔方程只差临门一脚。

什么是量子力学有什么用,量子力学学了有什么用(24)

上一页23456下一页

栏目热文

文档排行

本站推荐

Copyright © 2018 - 2021 www.yd166.com., All Rights Reserved.