图3 (a)基于Brosa模型对裂变产物分布的描述;(b)微观计算的Pu核裂变动力学演化路径(其中单位b表示10 m)
唯象的Brosa模型从裂变产物的质量分布出发,认为存在两种不对称的裂变模式(图3(a)),并认为不同的不对称裂变模式的起源是受到裂变位垒的影响。Brosa模型还通过颈部随机断裂来描述裂变观测量的展宽,脖子越长分布越宽。Brosa模型可以合理地解释裂变产额分布、总动能分布、中子发射多重数之间的关联,是物理直觉的很大成功,但是一直缺乏微观理论的支持。我们的结果揭示了动力学涨落效应正是Brosa模型中的S1、S2两种不对称裂变模式的起源。如图3(b)所示,随着涨落增加,长脖子S2裂变道的成分在增加,这与实验是一致的。这两种模式的裂变路径相似,不大可能是静态位垒的影响。
图4 (a)基于贝叶斯机器学习对U的不完整裂变产额的评价;(b)对U裂变碎片Xe的产额—能量关系的评价
近年来人工智能与机器学习在很多学科中的交叉应用获得了很大关注。实验上测量的裂变产物的产额往往是不完整的,有误差或存在分歧。特别是能量相关的裂变产额,在中子入射能量处于2 MeV与14 MeV之间的数据比较稀少。在这种背景下,我们提出基于贝叶斯机器学习来学习补充缺失的裂变产额数据(图4(a)),展示了机器学习的实际应用价值和优势。此外通过输入碎片的电荷奇偶信息,以及在学习中引入负值惩罚等,将物理信息和物理约束与机器学习进行了尝试结合。最近我们提出通过数据融合来更好地评价不完整、有分歧、有误差的核裂变产额。在反应堆中,裂变产物Xe有很大的中子吸收截面,是反应堆的“毒物”,会显著降低反应堆运行功率,其产额的评价很重要。图4(b)是我们基于贝叶斯机器学习对Xe产额的评价。当一种裂变数据在某些能区很稀少时,它与别的数据在其他能区的关联有助于这种数据的推断。数据融合可以考虑潜在的、高维的、非局域的关联,可以给出综合的误差传播,可以发掘出不精确的裂变数据的最大价值,有望形成新的核数据评价方法。
5. 核裂变机制
核裂变是一个极其复杂的非平衡非绝热的量子多体动力学过程,裂变后碎片之间存在量子纠缠。更深入地认识裂变机制有助于发展精确的裂变理论。TD-DFT理论最适合研究核裂变的微观机制。近年来,超级计算机的应用为微观裂变动力学的发展提供了很好的机遇,使我们有可能澄清或者更新一些唯象的裂变模型的经验图像。
在TD-DFT的基础上,对关联是最重要的剩余相互作用,对裂变机制有重要影响。人们认识到对关联相当于裂变的“润滑剂”,可以加速裂变过程。静态对关联也会导致裂变位垒的稍微降低,这会显著减少自发裂变的寿命。当核的密度缓慢变化时,动力学对关联有快速的涨落。当对关联非常大时,核体系形成一个超流的集体态,涨落效应被压制。在TD-DFT计算中,当对关联弱时,可能出现三分裂核裂变,而对关联强时则是二分裂。当对关联很弱时,裂变路径往往走短脖子的S1裂变道,与实验不符。当复合核处于高温激发时,对关联会很快衰减,涨落也更迅速。
核物质的耗散系数或者粘滞系数到底有多大呢?在著名的沥青滴漏实验中,由于沥青有很大的粘滞性,形成一个脖子拉伸很长的液滴,约10年才滴出一滴,如图5(a)所示。我们认为核物质的粘滞性比沥青小,但是比水大。通过把微观动力学裂变路径映射到经典动力学方程,可以提取出形状相关的耗散系数。这个计算需要提取出动力学的裂变位势,相比于静态位垒,动力学的裂变断点更远,碎片间的库仑能更小。这意味着相比于非绝热裂变,绝热计算的总动能会显著偏大,这也验证了非绝热裂变的合理性。我们的结果表明,裂变过程中耗散系数也在发生变化,一般在2×10—4×10s,这有助于约束唯象模型的耗散参数。耗散系数随着激发能增加而增加,随对关联增加而减小。随着激发能增加,由于很强的耗散,裂变动力学演化时间越来越长。这时涨落效应成为裂变的主要驱动机制,这与涨落—耗散定理是一致的。很强的耗散和粘滞性将导致一个拉长的裂变颈部构型(图5(b)),从而使库仑能降低,导致裂变释放的总动能减少。由于能量守恒,总动能减小,导致碎片的激发能增加,从而发射更多中子。微观TD-DFT计算能合理地解释裂变机制的能量相关性。
图5 (a)沥青滴漏实验展示出有拉长脖子的液滴;(b)微观TD-DFT计算给出的Pu裂变的断点构型
裂变分裂成的两个碎片之间存在很强的动力学纠缠,主导着碎片之间的能量分配、核子数分配、角动量关联等。由于断裂的碎片很快飞开,以至于部分的动力学纠缠还来不及塌缩。图6分别展示了不同裂变碎片发射中子数的平均值随碎片质量变化的分布、碎片中的中子与质子的平均比值,以及不同碎片所携带的平均角动量的分布。碎片发射中子的几率主要由碎片的激发能决定。TD-DFT计算得到的轻碎片激发能大于重碎片激发能,且它们的差别随激发能增加而减少。实际上碎片发射中子的多重数分布是一个型的锯齿结构(图6(a)),其能量分配机制还有待微观理论的解释。裂变是颈部随机断裂还是量子纠缠主导呢?唯象Brosa模型认为是随机断裂主导的。基于碎片之间的纠缠,两个碎片的核子数分配和能量分配具有不确定性。微观计算通过粒子数投影也能获得有展宽的分布。近年来法国实验组取得了很大的进展。实验上可以获得所有碎片的产额分布,其中碎片的中子与质子的比值也具有锯齿结构(图6(b)),但与中子多重数的锯齿结构相反,这为进一步认识裂变断裂机制提供了观测量。此外最近实验上获得了裂变碎片的角动量分布(图6(c)),这是一种新的观测量,引起了理论上很大的关注。美国一些理论组很快对裂变碎片角动量分布提出了多个解释。需要指出的是,美国在裂变理论模型方面有长期积累的优势。裂变碎片角动量的获得是与断裂模式(比如脖子的扭曲或弯曲断裂)有关呢,还是断裂后获得的?碎片的角动量分布也有相似的锯齿结构,可能主要由能量分配机制主导。原则上TD-DFT可以描述多种裂变观测量之间的关联,但是还需额外考虑超越平均场的效应,最终形成一个综合、自洽、可靠的微观裂变理论。
图6 (a)实验上观测的裂变碎片的平均发射中子数的分布;(b)碎片中平均的中子/质子比;(c)碎片所携带的平均角动量
6. 总结与展望
核裂变是一团强关联的量子物质分裂成两块的独特的量子动力学过程。核裂变的发现至今已经有80多年,但是核裂变过程非常复杂,对它的认识还有待进一步深入。裂变过程中既有单粒子自由度,也有集体自由度、集团自由度,还有涨落—耗散效应等交织在一起。裂变断裂前的脖子构型对裂变后观测量有重要影响。裂变断点既有随机性,也存在碎片之间的量子纠缠。断裂前体系的裂变位垒、能级密度、耗散系数也具有能量相关性,此外对关联对裂变机制有重要影响。我们看到微观的TD-DFT可以成功地解释裂变机制,有助于澄清或更新一些唯象的裂变模型的图像。基于BBGKY框架,进一步考虑更高阶的关联动力学,可以更现实地描述裂变。随着计算能力的增加,考虑高阶关联的裂变动力学将是一个重要方向。目前微观核裂变理论基于有效核力,存在一定的不确定性,包括裂变位垒的预言也存在误差。从现实核力出发,发展从头计算(ab initio)核结构是核物理的前沿方向。基于ab initio计算重核裂变过程还很遥远,但是可以为发展更精确的有效核力和有效哈密顿量提供指引。
无疑,核裂变的研究有很强的应用背景。为了应对气候变化,先进核能的发展将受到更大的重视。发展更精确可靠的核裂变理论,对升级核能应用十分重要,对一些重大的基础研究也很关键,比如超重元素合成、天体环境中的R-过程、中微子研究等。核裂变的研究既是迷人的量子多体问题,也有很强的交叉应用需求。随着超级计算、机器学习、量子计算的应用以及实验装置的发展,核裂变的基础研究迎来了新的机遇,将为核裂变应用提供新的线索。近年来,美国、法国等在核裂变基础研究方面取得系列进展,中国在核裂变的基础研究方面还有很大的发展空间和前景。
参考文献
[1] Meitner L,Frisch O R. Nature(London),1939,143:239
[2] 胡济民. 核裂变物理学. 北京:北京大学出版社,2014
[3] Kolos K,Sobes V,Vogt R et al. Phys. Rev. Research,2022,4:021001
[4] 核物理与等离子体物理—学科前沿及发展战略 . 北京:科学出版社,2017
[5] http://hiaf.impcas.ac.cn/
[6] 周善贵. 物理,2014,43(12):817
[7] Eichler M,Arcones A,Kelic A et al. Astrophys. J.,2015,808:30
[8] Mention G,Fechner M,Lasserre Th et al. Phys. Rev. D,2011,83:073006
[9] Bender M,Bernard R,Bertsch G et al. J. Phys. G,2020,47:113002
[10] Bohr N,Wheeler J A. Phys. Rev.,1939,56:426
[11] Pei J C,Nazarewicz W,Sheikh J A et al. Phys. Rev. Lett.,2009,102:192501
[12] Zhu Y,Pei J C. Phys. Rev. C,2016,94:024329
[13] Qiao C Y,Pei J C. Phys. Rev. C,2022,106:014608
[14] Ma L et al. Phys. Rev. C,2022,106:034316
[15] Pei J C,Zhu Y. Nucl. Phys. Rev.,2017,34(1):87
[16] Liu L L,Wu X Z,Chen Y J et al. Phys. Rev. C,2019,99:044614
[17] Randrup J,Moller P,Sierk A J. Phys. Rev. C,2011,84:034613
[18] Regnier D,Dubray N,Schunck N et al. Phys. Rev. C,2016,93:054611
[19] Zhao J,Nikšić T,Vretenar D et al. Phys. Rev. C,2019,99:014618
[20] Lu B N,Zhao J,Zhao E G et al. Phys. Rev. C,2014,89:014323
[21] Negele J W,Koonin S E,Möller P et al. Phys. Rev. C,1978,17:1098
[22] Bulgac A,Jin S,Roche K J et al. Phys. Rev. C,2019,100:034615
[23] Qiang Y,Pei J C,Stevenson P D. Phys. Rev. C,2021,103:L031304
[24] Lacroix D,Ayik S. Eur. Phys. J. A,2014,50:95
[25] Brosa U,Grossmann S,Müller A. Phys. Rep.,1990,197:167
[26] Wang Z A,Pei J C,Liu Y et al. Phys. Rev. Lett.,2019,123:122501
[27] Qiao C Y,Pei J C,Wang Z A et al. Phys. Rev. C,2021,103:034621
[28] Wang Z A,Pei J C. Phys. Rev. C,2021,104:064608
[29] Wang Z A,Pei J C,Chen Y J et al. Phys. Rev. C,2022,106:L021304
[30] Qiang Y,Pei J C. Phys. Rev. C,2021,104:054604
[31] Schmidt K H,Estienne M,Fallot M et al. EPJ Conf.,2021,256:00015
[32] Martin J F et al. Phys. Rev. C,2021,104:044602
[33] Ramos D et al. Phys. Rev. Lett.,2019,123:092503
[34] Wilson J N et al. Nature,2021,590:566
[35] Verriere M,Schunck N,Regnier D. Phys. Rev. C,2021,103:054602
转载内容仅代表作者观点
不代表中科院物理所立场
如需转载请联系原公众号
来源:中国物理学会期刊网
编辑:草莓熊