图 1-8
和 OSI 七层网络协议的主要区别如下
- 应用层、表示层、会话层三个层次提供的服务相差不是很大,所以在 TCP/IP 协议中,它们被合并为应用层一个层次。
- 由于通信(数据)链路层和物理层的内容很相似,所以在 TCP/IP 协议中它们被归并在网络接口层一个层次里。
我们的主要研究对象就是 TCP/IP 的四层协议。
下面我就和你聊一聊 TCP/IP 协议簇中都有哪些具体的协议。
IP 协议IP 是网际互联协议,英文 Internet Protocol,位于网络层。IP 协议是整个 TCP/IP 协议簇的核心,也是构成互联网的基础。IP 能够为运输层提供数据分发,同时也能够组装数据供运输层使用。它将多个网络连接成为一个互联网,这样能够提高网络的可扩展性,实现大规模网络互联。二是分割顶层网络和底层网络之间的耦合关系。
ICMP 协议ICMP 协议是 Internet 报文控制协议,英文Internet Control Message Protocol, ICMP 协议主要用于在 IP 主机、路由器之间传递控制消息。ICMP 属于网络层的协议,当遇到 IP 无法访问目标、IP 路由器无法按照当前传输速率转发数据包时,会自动发送 ICMP 消息,从这个角度来说,ICMP 协议可以看作是错误侦测与回报机制,让我们检查网络状况、也能够确保连线的准确性。
ARP 协议ARP 协议是地址解析协议,英文 Address Resolution Protocol,它能够根据 IP 地址获取物理地址。主机发送信息时会将包含目标 IP 的 ARP 请求广播到局域网络上的所有主机,并接受返回消息,以此来确定物理地址。收到消息后的物理地址和 IP 地址会在 ARP 中缓存一段时间,下次查询的时候直接从 ARP 中查询即可。
TCP 协议TCP 是传输控制协议,英文Transmission Control Protocol,它是一种面向连接的、可靠的、基于字节流的传输协议,TCP 协议位于传输层,TCP 协议是 TCP/IP 协议簇中的核心协议,它最大的特点就是提供可靠的数据交付。TCP 的主要特点有 慢启动、拥塞控制、快速重传、可恢复。
UDP 协议UDP 协议是用户数据报协议,英文 User Datagram Protocol,UDP 也是一种传输层协议,与 TCP 相比,UDP 提供一种不可靠的数据交付,也就是说,UDP 协议不保证数据是否到达目标节点。当报文发送之后,是无法得知其是否安全完整到达的。UDP 是一种无连接的协议,传输数据之前源端和终端无需建立连接,不对数据报进行检查与修改,无须等待对方的应答,会出现分组丢失、重复、乱序等现象。但是 UDP 具有较好的实时性,工作效率较 TCP 协议高。
FTP 协议FTP 协议是文件传输协议,英文File Transfer Protocol,应用层协议之一,是 TCP/IP 协议的重要组成之一,FTP 协议分为 FTP 服务器和 FTP 客户端两部分,FTP 服务器用来存储文件,FTP 客户端用来访问 FTP 服务器上的文件,FTP 的传输效率比较高,所以一般使用 FTP 来传输大文件。
DNS 协议DNS 协议是域名解析协议,英文 Domain Name System,它也是应用层的协议之一,DNS 协议是一个将域名和 IP 相互映射的分布式数据库系统。DNS 缓存能够加快网络资源的访问。
SMTP 协议SMTP 协议是邮件传输协议,英文 Simple Mail Transfer Protocol,应用层协议之一,SMTP 主要是用作邮件收发协议,SMTP 服务器是遵循 SMTP 协议的发送邮件服务器,用来发送或中转用户发出的电子邮件
SLIP 协议SLIP 协议是指串行线路网际协议,英文 Serial Line Internet Protocol,是在串行通信线路上支持 TCP/IP 协议的一种点对点式的链路层通信协议。
PPP 协议PPP 协议是点对点协议,英文Point to Point Protocol,是一种链路层协议,是在为同等单元之间传输数据包而设计的。设计目的主要是用来通过拨号或专线方式建立点对点连接发送数据,使其成为各种主机、网桥和路由器之间简单连接的一种共通的解决方案。
网络核心概念传输方式网络根据传输方式可以进行分类,一般分为面向连接型和面向无连接型。
- 面向连接型中,在发送数据之前,需要在主机之间建立一条通信线路。
- 面向无连接型则不要求建立和断开连接,发送方可用于任何时候发送数据。接收端也不知道自己何时从哪里接收到数据。
在互联网应用中,每个终端系统都可以彼此交换信息,这种信息也被称为报文(Message),报文是一个集大成者,它可以包括你想要的任何东西,比如文字、数据、电子邮件、音频、视频等。为了从源目的地向端系统发送报文,需要把长报文切分为一个个小的数据块,这种数据块称为分组(Packets),也就是说,报文是由一个个小块的分组组成。在端系统和目的地之间,每个分组都要经过通信链路和分组交换机,分组要在端系统之间交互需要经过一定的时间,如果两个端系统之间需要交互的分组为 L 比特,链路的传输速率问 R 比特/秒,那么传输时间就是 L / R秒。
一个端系统需要经过交换机给其他端系统发送分组,当分组到达交换机时,交换机就能够直接进行转发吗?不是的,交换机可没有这么无私,你想让我帮你转发分组?好,首先你需要先把整个分组数据都给我,我再考虑给你发送的问题,这就是存储转发传输。
存储转发传输下面是一个存储转发传输的示意图。
图 1-9
由图 1-9 可以看出,分组 1、2、3 向交换器进行分组传输,并且交换机已经收到了分组 1 发送的比特,此时交换机会直接进行转发吗?答案是不会的,交换机会把你的分组先缓存在本地。这就和考试作弊一样,一个学霸要经过学渣 A 给学渣 B 传答案,学渣 A 在收到答案后,它可能直接把卷子传过去吗?学渣 A 说,等我先把答案抄完(保存功能)后再把卷子给你,当然一个及其有素质的学渣就另说了。
排队时延和分组丢失什么?你认为交换机只能和一条通信链路进行相连?那你就大错特错了,这可是交换机啊,怎么可能只有一条通信链路呢?
所以我相信你一定能想到这个问题,当多个端系统同时给交换器发送分组,一定存在顺序到达和排队问题。事实上,对于每条相连的链路,该分组交换机都会有一个输出缓存(output buffer) 和 输出队列(output queue) 与之对应,它用于存储路由器准备发往每条链路的分组。如果到达的分组发现路由器正在接收其他分组,那么新到达的分组就会在输出队列中进行排队,这种等待分组转发所耗费的时间也被称为排队时延,上面提到分组交换器在转发分组时会进行等待,这种等待被称为存储转发时延,所以我们现在了解到的有两种时延,但是其实是有四种时延。这些时延不是一成不变的,其变化程序取决于网络的拥塞程度。
因为队列是有容量限制的,当多条链路同时发送分组导致输出缓存无法接受超额的分组后,这些分组会丢失,这种情况被称为丢包(packet loss),到达的分组或者已排队的分组将会被丢弃。
下图说明了一个简单的分组交换网络。
图 1-10
下面来一个情景模拟: 假定主机 A 和 主机 B 要向主机 E 发送分组,主机 A 和 B 首先通过 100 Mbps 以太网链路将其数据包发送到第一台路由器,然后路由器将这些数据包定向到 15 Mbps 的链路。如果在较短的时间间隔内,数据包到达路由器的速率(转换为每秒比特数)超过 15 Mbps,则在数据包在链路输出缓冲区中排队之前,路由器上会发生拥塞,然后再传输到链路上。例如,如果主机 A 和主机 B 背靠背同时发了 5 包数据,那么这些数据包中的大多数将花费一些时间在队列中等待。实际上,这种情况与许多普通情况完全相似,例如,当我们排队等候银行出纳员或在收费站前等候时。
转发表和路由器选择协议我们刚刚讲过,路由器和多个通信线路进行相连,如果每条通信链路同时发送分组的话,可能会造成排队和丢包的情况,然后分组在队列中等待发送,现在我就有一个问题问你,队列中的分组发向哪里?这是由什么机制决定的?
换个角度想问题,路由的作用是什么?把不同端系统中的数据包进行存储和转发 。在因特网中,每个端系统都会有一个 IP 地址,当主机发送分组时,会在分组的首部加上主机的 IP 地址。每台路由器都会有一个转发表(forwarding table),当一个分组到达路由器后,路由器会检查分组中目的地址的一部分,并用目的地址搜索转发表,以找出适当的传输链路,然后映射成为输出链路进行转发。
那么问题来了,路由器内部是怎样设置转发表的呢?详细的我们后面会讲到,这里只是说个大概,路由器内部也是具有路由选择协议的,用于自动设置转发表。
电路交换在计算机网络中,另一种通过网络链路和路由进行数据传输的另外一种方式就是电路交换(circuit switching)。电路交换在资源预留上与分组交换不同,什么意思呢?
就是分组交换不会预留每次端系统之间交互分组的缓存和链路传输速率,所以每次都会进行排队传输;而电路交换会预留这些信息。一个简单的例子帮助你理解:这就好比有两家餐馆,餐馆 A 需要预定而餐馆 B 不需要预定,对于可以预定的餐馆 A,我们必须先提前与其进行联系,但是当我们到达目的地时,我们能够立刻入座并选菜。而对于不需要预定的那家餐馆来说,你可能不需要提前联系,但是你必须承受到达目的地后需要排队的风险。
下面显示了一个电路交换网络
图 1-11
在这个网络中,4条链路用于4台电路交换机。这些链路中的每一条都有4条电路,因此每条链路能支持4条并行的链接。每台主机都与一台交换机直接相连,当两台主机需要通信时,该网络在两台主机之间创建一条专用的端到端的链接(end-to-end connection)。
分组交换和电路交换的对比分组交换的支持者经常说分组交换不适合实时服务,因为它的端到端时延时不可预测的。而分组交换的支持者却认为分组交换提供了比电路交换更好的带宽共享;它比电路交换更加简单、更有效,实现成本更低。但是现在的趋势更多的是朝着分组交换的方向发展。
分组交换网的时延、丢包和吞吐量因特网可以看成是一种基础设施,该基础设施为运行在端系统上的分布式应用提供服务。我们希望在计算机网络中任意两个端系统之间传递数据都不会造成数据丢失,这是一个极高的目标,实践中难以达到。所以,在实践中必须要限制端系统之间的吞吐量用来控制数据丢失。如果在端系统之间引入时延,也不能保证不会丢失分组问题。所以我们从时延、丢包和吞吐量三个层面来看一下计算机网络。
分组交换中的时延计算机网络中的分组从一台主机(源)出发,经过一系列路由器传输,在另一个端系统中结束它的历程。在这整个传输历程中,分组会涉及到四种最主要的时延:节点处理时延(nodal processing delay)、排队时延(queuing delay)、传输时延(total nodal delay)和传播时延(propagation delay)。这四种时延加起来就是节点总时延(total nodal delay)。
如果用 dproc dqueue dtrans dpop 分别表示处理时延、排队时延、传输时延和传播时延,则节点的总时延由以下公式决定: dnodal = dproc dqueue dtrans dpop。
时延的类型下面是一副典型的时延分布图,让我们从图中进行分析一下不同的时延类型。