该望远镜又名天顶扇区(zenith sector ),之所以叫此名,因为光学管位于当地的子午线所在竖直面内,望远镜的观察的范围为子午线上空的一个小扇区。换句话说,光学管在地面的投影与子午线平行,在东西向不偏不倚的对准正上方,它的倾斜度只能沿南北向的子午线微调。
这样做的目的是,每天只观察刚好抵达子午线正上方的那些星星,当那些星星被观察时,都尽可能的处在天顶位置。
观察者躺在屋内的沙发上,通过调节目镜观察目标恒星。目镜边的游标刻度会给出恒星在南北方向的偏角。

根据上图,由于γ-Dra在黄道面的上方略偏左的方向,从12月到第二年6月期间,地球是朝着靠近γ-Dra的方向运动的,也就是越来越靠近它的正下方,所以γ-Dra的纬度应增高——虽然很微弱。所以,为了看到它,望远镜的管子应该不断的往北偏移。而从第二年6月到年底,过程是反过来的——管子应该往南偏移。
友情提示:上面这个图的信息量很大,值得你仔细品鉴。
由于胡克曾在1674年给出γ-Dra的视差大约为23角秒,因此布拉德利预计γ-Dra在南北方向的偏移随时间变化是下面这样的。

然而,测量结果却让布拉德利感到困惑,他根本没有观察到预期的视差,而是观察到一件完全出乎意料的事情。
事实上,单就没有观察到视差这件事来说,其实也难怪,因为根据现在所知道的γ-Dra到地球的距离为154 光年,它产生的视差的弧度约为 再换算角度制不到 21 毫角秒,比胡克原来给出值的小三个数量级,差不多相当于站在广州来观测黑龙江或新疆的一个人的身高,布拉德利的望远镜根本无法看到。
那么,布拉德利发现了什么新鲜事呢?
布拉德利确实也观察到了γ-Dra高度的变化,但全年的变化与上述视差的预期完全不同。他得到的观测结果如下

从12月到3月,γ-Dra在子午线上逐渐向南移动;到3月时,距起始位置偏移了约20″;从3月到6月,它又向北移动回到起始位置;然后从6月到9月,它继续向北移动,直到最终达到起始位置以北20″;最后,从9月到12月,它又向南移动回到它的起始位置。
04恒星光行差的解释
布拉德利左思右想,据说有一天,当他坐船在泰晤士河上航行时,他注意到风向未变,但由于船的航向改变,桅杆上的指示旗的指示方向跟着变了,他一下子明白了。
他想到,光是从恒星射来的粒子流(布拉德利笃信光的微粒说),那么与雨中穿行者看到雨滴的方向改变类似,当地球相对恒星运动时,这些光的粒子流的方向也会发生偏移,所以光总会朝地球公转速度的反方向偏转一个角度。
是的,布拉德利所想到的和本文第2节所讲的差不多,只不过他是基于光的微粒说来思考的。他将地球绕太阳公转的速度看作地球相对恒星的速度,这样一来,他就得到了光行差公式,成为历史上第一个研究并解释光行差现象的人。
布拉德利的这种“光的方向偏移”想法,如果用光的以太波动观点来理解,当然也是一样的结果——往后刮起的以太风会将头顶射下的光往后吹,使之往后偏转,如下图所示。
