一、见“给角求值”问题,运用“新兴”诱导公式一步到位转换到区间(-90o,90o)的公式.
1、sin(kπ α)=(-1)ksinα(k∈Z);
2、cos(kπ α)=(-1)kcosα(k∈Z);
3、 tan(kπ α)=(-1)ktanα(k∈Z);
4、cot(kπ α)=(-1)kcotα(k∈Z).
二、见“sinα±cosα”问题,运用三角“八卦图”
1、sinα cosα>0(或<0)óα的终边在直线y x=0的上方(或下方);
2、sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);
3、|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;
4、|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.
三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。
四、见“切割”问题,转换成“弦”的问题。
五、“见齐思弦”=>“化弦为一”:已知tanα,求sinα与cosα的齐次式,有些整式情形还可以视其分母为1,转化为sin2α cos2α.
六、见“正弦值或角的平方差”形式,启用“平方差”公式:
1、sin(α β)sin(α-β)= sin2α-sin2β;
2、 cos(α β)cos(α-β)= cos2α-sin2β.
七、见“sinα±cosα与sinαcosα”问题,起用平方法则:
(sinα±cosα)2=1±2sinαcosα=1±sin2α,故
1、若sinα cosα=t,(且t2≤2),
则2sinαcosα=t2-1=sin2α;
2、若sinα-cosα=t,(且t2≤2),
则2sinαcosα=1-t2=sin2α.
八、见“tanα tanβ与tanαtanβ”问题,启用变形公式:
tanα tanβ=tan(α β)(1-tanαtanβ).
思考:tanα-tanβ=???
九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)
1、函数y=Asin(wx φ)和函数y=Acos(wx φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;
2、函数y=Asin(wx φ)和函数y=Acos(wx φ)的图象,关于其中间零点分别成中心对称;
3、同样,利用图象也可以得到函数y=Atan(wx φ)和函数y=Acot(wx φ)的对称性质。
十、见“求最值、值域”问题,启用有界性,或者辅助角公式:
1、|sinx|≤1,|cosx|≤1;
2.(asinx bcosx)2=(a2 b2)sin2(x φ)≤(a2 b2);
3、asinx bcosx=c有解的充要条件是a2 b2≥c2.
十一、见“高次”,用降幂,见“复角”,用转化.
1、cos2x=1-2sin2x=2cos2x-1.
2、2x=(x y) (x-y);2y=(x y)-(x-y);
x-w=(x y)-(y w)等。
正弦函数、余弦函数、正切函数和余切函数统称为三角函数。它们的地位和作用与一次函数、二次函数、幂函数、指数函数以及对数函数一样,都是基本初等函数。