矩阵的行列式运算如下所示:
我们的方法可以计算任意大小矩阵(只要其行列的数量相同)的行列式:
class Matrix {
// ...
determinant() {
if (this.rows.length !== this.rows[0].length) {
throw new Error('Only matrices with the same number of rows and columns are supported.')
}
if (this.rows.length === 2) {
return this.rows[0][0] * this.rows[1][1] - this.rows[0][1] * this.rows[1][0]
}
const parts = this.rows[0].map((coef, index) => {
const matrixRows = this.rows.slice(1).map(row => [ ...row.slice(0, index), ...row.slice(index 1)])
const matrix = new Matrix(...matrixRows)
const result = coef * matrix.determinant()
return index % 2 === 0 ? result : -result
})
return sum(parts)
}
}
const matrix2 = new Matrix(
[ 0, 3],
[-2, 1]
)
console.log(matrix2.determinant())
// 6
const matrix3 = new Matrix(
[2, -3, 1],
[2, 0, -1],
[1, 4, 5]
)
console.log(matrix3.determinant())
// 49
const matrix4 = new Matrix(
[3, 0, 2, -1],
[1, 2, 0, -2],
[4, 0, 6, -3],
[5, 0, 2, 0]
)
console.log(matrix4.determinant())
// 20
复制代码
行列式可以告诉我们变换时对象被拉伸的程度。因此我们可以将其视为线性变换改变面积的因子。为了更好地理解这个概念,请参考linear-algebra-demo:
在下图中,我们可以看到对红色的 1×1 方形进行线性变换后得到了一个 3×2 的长方形,面积从 1 变为了 6 ,这个数字与线性变换矩阵的行列式值相同。
如果我们应用一个剪切变换,可以看到方形会变成一个面积不变的平行四边形。因此,剪切变换矩阵的行列式值等于 1:
如果行列式的值是 负数 ,则说明应用线性变换后,空间被反转了。比如在下图中,我们可以看到变换前 在 的左边,而变换后 在 的右边。